31 research outputs found

    OpenEP: an open-source simulator for electroporation-based tumor treatments

    Get PDF
    Electroporation (EP), the increase of cell membrane permeability due to the application of electric pulses, is a universal phenomenon with a broad range of applications. In medicine, some of the foremost EP-based tumor treatments are electrochemotherapy (ECT), irreversible electroporation, and gene electrotransfer (GET). The electroporation phenomenon is explained as the formation of cell membrane pores when a transmembrane cell voltage reaches a threshold value. Predicting the outcome of an EP-based tumor treatment consists of finding the electric field distribution with an electric threshold value covering the tumor (electroporated tissue). Threshold and electroporated tissue are also a function of the number of pulses, constituting a complex phenomenon requiring mathematical modeling. We present OpenEP, an open-source specific purpose simulator for EP-based tumor treatments, modeling among other variables, threshold, and electroporated tissue variations in time. Distributed under a free/libre user license, OpenEP allows the customization of tissue type; electrode geometry and material; pulse type, intensity, length, and frequency. OpenEP facilitates the prediction of an optimal EP-based protocol, such as ECT or GET, defined as the critical pulse dosage yielding maximum electroporated tissue with minimal damage. OpenEP displays a highly efficient shared memory implementation by taking advantage of parallel resources; this permits a rapid prediction of optimal EP-based treatment efficiency by pulse number tuning.Fil: Marino, Matias Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaFil: Luján, Emmanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaFil: Mocskos, Esteban Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; ArgentinaFil: Marshall, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentin

    Microenvironmental influence on microtumour infiltration patterns: 3D-mathematical modelling supported by: In vitro studies

    Get PDF
    Mathematical modelling approaches have become increasingly abundant in cancer research. Tumour infiltration extent and its spatial organization depend both on the tumour type and stage and on the bio-physicochemical characteristics of the microenvironment. This sets a complex scenario that often requires a multidisciplinary and individually adjusted approach. The ultimate goal of this work is to present an experimental/numerical combined method for the development of a three-dimensional mathematical model with the ability to reproduce the growth and infiltration patterns of a given avascular microtumour in response to different microenvironmental conditions. The model is based on a diffusion-convection reaction equation that considers logistic proliferation, volumetric growth, a rim of proliferative cells at the tumour surface, and invasion with diffusive and convective components. The parameter values of the model were fitted to experimental results while radial velocity and diffusion coefficients were made spatially variable in a case-specific way through the introduction of a shape function and a diffusion-limited-aggregation (DLA)-derived fractal matrix, respectively, according to the infiltration pattern observed. The in vitro model consists of multicellular tumour spheroids (MTSs) of an epithelial mammary tumour cell line (LM3) immersed in a collagen I gel matrix with a standard culture medium ("naive" matrix) or a conditioned medium from adipocytes or preadipocytes ("conditioned" matrix). It was experimentally determined that both adipocyte and preadipocyte conditioned media had the ability to change the MTS infiltration pattern from collective and laminar to an individual and atomized one. Numerical simulations were able to adequately reproduce qualitatively and quantitatively both kinds of infiltration patterns, which were determined by area quantification, analysis of fractal dimensions and lacunarity, and Bland-Altman analysis. These results suggest that the combined approach presented here could be established as a new framework with interesting potential applications at both the basic and clinical levels in the oncology area.Fil: Luján, Emmanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; ArgentinaFil: Soto, Daniela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Rosito, María Sol. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Soba, Alejandro. Comisión Nacional de Energía Atómica; ArgentinaFil: Guerra, Liliana Noemi. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Calvo, Juan Carlos. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Marshall, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaFil: Suárez, Cecilia Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentin

    Celsius 3 - Manual de administración

    Get PDF
    El software Celsius 3®, con el mismo objetivo de simplificar la gestión del intercambio bibliográfico entre las diferentes universidades ISTEC, es la tercera versión de esta herramienta (las anteriores fueron Celsius y Celsius NT), y al igual que sus antecesores, es desarrollado y mantenido íntegramente por el equipo de PREBI­UNLP, el nodo de LibLink en la Universidad Nacional de La Plata, Argentina. Sin embargo, a diferencia de las versiones previas, Celsius 3 es un sistema centralizado. Esto significa que el software se aloja y ejecuta desde un nodo central único, disponible para todas las instituciones participantes la iniciativa. Este sistema permite realizar un seguimiento exhaustivo de los cambios y estadíos en que se encuentra cada solicitud, y aporta estadísticas que permiten transparentar, controlar y optimizar el servicio. Actualmente, luego de la puesta en producción de Celsius 3, el equipo de PREBI trabaja para que todas las instituciones miembro tengan una instancia funcional dentro del nuevo sistema centralizado

    Modelado matemático de un patrón de invasión tumoral a través de ecuaciones de reacción-difusión y fractales DLA (diffusion limited aggregation)

    Get PDF
    Siendo el cáncer una enfermedad altamente compleja, es necesario que su estudio se encuadre dentro de la biología de sistemas. En el caso del tumor mamario, ha sido ampliamente establecida la importancia del estroma, y específicamente del adipocito, como uno de los principales reguladores de la progresión tumoral. Recientemente hemos presentado un modelo matemático basado en una ecuaciónde reacción-difusión-convección que logra describir y predecir el crecimiento e infiltración de esferoides multicelulares de una línea tumoral epitelial mamaria inmersos en un gel tridimensional de colágeno I (modelo in vitro de un microtumor de estadio avascular infiltrando una matriz hospedadora). En el presente trabajo se presenta una derivación de ese modelo que logra describir en este caso un patrón de diferente al anterior resultante de la incorporación de medio condicionado proveniente de adipocitos al microambiente tumoral de los esferoides. El modelo describe la zona de infiltración tumoral a través de un término de proliferación celular, una fuente de células en la superficie delesferoide y un componente difusivo de la invasión. La descripción del tipo de invasión en este caso se logra incorporando una difusión espacialmente variable dependiente de una matriz fractal generada por una variante del método de DLA (diffusion limited aggregation). Los valores de los principales parámetrosdel modelo se estiman a partir de datos experimentales. Las simulaciones obtenidas se ajustan cualitativa y semicuantitativamente a los resultados in vitro, según muestran los análisis de fractalidad realizados por los métodos de boxcounting y lagunaridad. La potencialidad de esta interacción teórico-experimental es muy amplia para estudiar las relaciones entre un tumor y su microambitente circundante.Fil: Luján, Emmanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; ArgentinaFil: Soto, Daniela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Rosito, María S.. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Soba, Alejandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Guerra, Liliana Noemi. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Luján; ArgentinaFil: Marshall, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaFil: Suárez, Cecilia Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentin

    Guidelines to Establish an Office of Student Accessibility Services in Higher Education Institutions

    Get PDF
    The objective of this paper is to propose a set of guidelines to establish an office of Student Accessibility Services (SAS) in Higher Education Institutions (HEIs). The proposed guidelines help to integrate disjointed knowledge to facilitate its interpretation and implementation during deployment of basic support services in favor of students with disability. These guidelines can help to mitigate complexity in providing SAS for the first time in HEIs. These guidelines cover both the design and implementation of an office of SAS and its management. Knowledge was found through a multivocal literature review (MLR), which allowed to capture not only academic approaches but also vantage points and experiences from practice. Key concepts and aspects were organized into eight components (five related to the design and implementation, and three associated with the management context). An expert appraisal method was used as a proof of concept, which complemented a previously performed preliminary implementation example. Obtained results demonstrated the pertinence of the conceptual proposal and confirmed guidelines capability for full implementation in a real-world scenario.This research work has been co-funded by the Erasmus+ Programme of the European Union, project EduTech (609785-EPP-1-2019-1-ES-EPPKA2-CBHE-JP)

    Modelado matemático de un patrón de invasión tumoral a través de ecuaciones de reacción-difusión y fractales DLA (<i>diffusion limited aggregation</i>)

    Get PDF
    Siendo el cáncer una enfermedad altamente compleja, es necesario que su estudio se encuadre dentro de la biología de sistemas. En el caso del tumor mamario, ha sido ampliamente establecida la importancia del estroma, y específicamente del adipocito, como uno de los principales reguladores de la progresión tumoral. Recientemente hemos presentado un modelo matemático basado en una ecuación de reacción-difusión-convección que logra describir y predecir el crecimiento e infiltración de esferoides multicelulares de una línea tumoral epitelial mamaria inmersos en un gel tridimensional de colágeno I (modelo in vitro de un microtumor de estadio avascular infiltrando una matriz hospedadora). En el presente trabajo se presenta una derivación de ese modelo que logra describir en este caso un patrón de infiltración totalmente diferente al anterior resultante de la incorporación de medio condicionado proveniente de adipocitos al microambiente tumoral de los esferoides. El modelo describe la zona de infiltración tumoral a través de un término de proliferación celular, una fuente de células en la superficie del esferoide y un componente difusivo de la invasión. La descripción del tipo de invasión en este caso se logra incorporando una difusión espacialmente variable dependiente de una matriz fractal generada por una variante del método de DLA (diffusion limited aggregation). Los valores de los principales parámetros del modelo se estiman a partir de datos experimentales. Las simulaciones obtenidas se ajustan cualitativa y semicuantitativamente a los resultados in vitro, según muestran los análisis de fractalidad realizados por los métodos de boxcounting y lagunaridad. La potencialidad de esta interacción teórico-experimental es muy amplia para estudiar las relaciones entre un tumor y su microambitente circundante.Publicado en: Mecánica Computacional vol. XXXV, no. 8.Facultad de Ingenierí

    Modelado matemático de un patrón de invasión tumoral a través de ecuaciones de reacción-difusión y fractales DLA (<i>diffusion limited aggregation</i>)

    Get PDF
    Siendo el cáncer una enfermedad altamente compleja, es necesario que su estudio se encuadre dentro de la biología de sistemas. En el caso del tumor mamario, ha sido ampliamente establecida la importancia del estroma, y específicamente del adipocito, como uno de los principales reguladores de la progresión tumoral. Recientemente hemos presentado un modelo matemático basado en una ecuación de reacción-difusión-convección que logra describir y predecir el crecimiento e infiltración de esferoides multicelulares de una línea tumoral epitelial mamaria inmersos en un gel tridimensional de colágeno I (modelo in vitro de un microtumor de estadio avascular infiltrando una matriz hospedadora). En el presente trabajo se presenta una derivación de ese modelo que logra describir en este caso un patrón de infiltración totalmente diferente al anterior resultante de la incorporación de medio condicionado proveniente de adipocitos al microambiente tumoral de los esferoides. El modelo describe la zona de infiltración tumoral a través de un término de proliferación celular, una fuente de células en la superficie del esferoide y un componente difusivo de la invasión. La descripción del tipo de invasión en este caso se logra incorporando una difusión espacialmente variable dependiente de una matriz fractal generada por una variante del método de DLA (diffusion limited aggregation). Los valores de los principales parámetros del modelo se estiman a partir de datos experimentales. Las simulaciones obtenidas se ajustan cualitativa y semicuantitativamente a los resultados in vitro, según muestran los análisis de fractalidad realizados por los métodos de boxcounting y lagunaridad. La potencialidad de esta interacción teórico-experimental es muy amplia para estudiar las relaciones entre un tumor y su microambitente circundante.Publicado en: Mecánica Computacional vol. XXXV, no. 8.Facultad de Ingenierí

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    LibreGrowth: A tumor growth code based on reaction-diffusion equations using shared memory

    No full text
    In recent years, in-silico experimentation within the field of oncological medicine has been intensively investigated with the aim of better understanding tumor dynamics and dose–response relationships in cancer treatments. In a series of previous works, Luján et al. (2018, 2017, 2016)we described the micro-environmental influence on micro-tumor infiltration patterns through in-silico/in-vitro experimentation. Here we present the latest version of the software utilized for, but not limited to, those studies: LibreGrowth, a libre tumor growth code able to simulate the core growth and peripheral tumor cell infiltration, considering a benign and a malignant stages. We implemented a reaction–diffusion based model, with spatially variable diffusion coefficient, into a three-dimensional domain, using C++ and OpenMP over a GNU/Linux system. LibreGrowth aims to provide a flexible implementation for depicting heterogeneous tissues and infiltration processes, and to shed light in current therapy optimization strategies. Program summary: Program Title: LibreGrowth Program Files doi: http://dx.doi.org/10.17632/zp2my52xpv.1 Licensing provisions: GPLv3 Programming language: C++, OpenMP Supplementary material: Nature of problem: In the field of computational oncology, mathematical models based on reaction–diffusion equations describing tumor proliferation and invasion into peripheral host tissue have proved to be of clinical relevance. In-silico/in-vitro experimentation could help in the design of new strategies able to predict as much as possible the invasive behavior of a tumor, based on its particular properties and the bio-physicochemical characteristics of its microenvironment. Solution method: We introduced LibreGrowth, the latest version of the codes used in our previous studies to model the growth and infiltration of a tumor. It implements mentioned reaction–diffusion model through the standard finite difference method, using C++ and OpenMP parallelization technology.Fil: Luján, Emmanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaFil: Rosito, María Sol. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio(i); ArgentinaFil: Soba, Alejandro. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaFil: Suárez, Cecilia Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentin

    Towards an optimal dose-response relationship in gene electrotransfer protocols

    No full text
    In search of an optimal gene electrotransfer (GET) protocol, an electroporation-based (EP) tumor treatment with great potential as a non-viral gene-delivery system, the concept of the dose-response relationship is introduced. It is shown that a reliable dose parameter is the pulse dosage and reliable response parameters are the reversibly electroporated tissue area as well as the unwanted damaged tissue area and plasmid damage due to pH. The standard stationary EP model consists in computing the reversibly electroporated tissue area in the first pulse as the region of tissue subjected to an electric field distribution higher than an electric field threshold for EP, where the electric field threshold comes from an experimental measurement and the electric field distribution from the solution of the nonlinear stationary Laplace equation for the electrostatic potential. The extended standard EP model introduced here consists in replicating for n consecutive pulses the standard EP model, via the experimental measurement in time of the successive thresholds. Because experimental data of this threshold variation is lacking, an exponential time decay function is assumed based on experimental measurements. The damage induced by pH fronts is defined as the tissue area subjected to pH abrupt changes above a basic threshold or below an acid threshold, where these changes come from numerical solutions via the electrolytic ablation (EA) model for EP-based protocols and the basic and acid thresholds from experiments. An optimal dose-response relationship in a GET protocol, for the range of pulse intensities with fixed pulse length and frequency, tested here, is predicted as the critical pulse dosage yielding maximum reversibly electroporated tissue area with minimal tissue area damage induced by pH fronts. Moreover, since damage induced by pH changes is proportional to the Coulomb dosage, damage induced by pH fronts is negligible in typical EP-based tumor protocols such as in electrochemotherapy (ECT) and irreversible electroporation (IRE) but not in GET, due to the most often longer pulses applied/used, i.e. higher dosage applied.Fil: Luján, Emmanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Marino, Matias Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaFil: Olaiz, Nahuel Manuel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaFil: Marshall, Guillermo Ricardo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentin
    corecore