124 research outputs found

    Dynamics of SNARE Assembly and Disassembly during Sperm Acrosomal Exocytosis

    Get PDF
    The dynamics of SNARE assembly and disassembly during membrane recognition and fusion is a central issue in intracellular trafficking and regulated secretion. Exocytosis of sperm's single vesicle—the acrosome—is a synchronized, all-or-nothing process that happens only once in the life of the cell and depends on activation of both the GTP-binding protein Rab3 and of neurotoxin-sensitive SNAREs. These characteristics make acrosomal exocytosis a unique mammalian model for the study of the different phases of the membrane fusion cascade. By using a functional assay and immunofluorescence techniques in combination with neurotoxins and a photosensitive Ca(2+) chelator we show that, in unactivated sperm, SNAREs are locked in heterotrimeric cis complexes. Upon Ca(2+) entry into the cytoplasm, Rab3 is activated and triggers NSF/α-SNAP-dependent disassembly of cis SNARE complexes. Monomeric SNAREs in the plasma membrane and the outer acrosomal membrane are then free to reassemble in loose trans complexes that are resistant to NSF/α-SNAP and differentially sensitive to cleavage by two vesicle-associated membrane protein (VAMP)–specific neurotoxins. Ca(2+) must be released from inside the acrosome to trigger the final steps of membrane fusion that require fully assembled trans SNARE complexes and synaptotagmin. Our results indicate that the unidirectional and sequential disassembly and assembly of SNARE complexes drive acrosomal exocytosis

    2b-RAD genotyping for population genomic studies of Chagas disease vectors: Rhodnius ecuadoriensis in Ecuador

    Get PDF
    Background: Rhodnius ecuadoriensis is the main triatomine vector of Chagas disease, American trypanosomiasis, in Southern Ecuador and Northern Peru. Genomic approaches and next generation sequencing technologies have become powerful tools for investigating population diversity and structure which is a key consideration for vector control. Here we assess the effectiveness of three different 2b restriction site-associated DNA (2b-RAD) genotyping strategies in R. ecuadoriensis to provide sufficient genomic resolution to tease apart microevolutionary processes and undertake some pilot population genomic analyses. Methodology/Principal findings: The 2b-RAD protocol was carried out in-house at a non-specialized laboratory using 20 R. ecuadoriensis adults collected from the central coast and southern Andean region of Ecuador, from June 2006 to July 2013. 2b-RAD sequencing data was performed on an Illumina MiSeq instrument and analyzed with the STACKS de novo pipeline for loci assembly and Single Nucleotide Polymorphism (SNP) discovery. Preliminary population genomic analyses (global AMOVA and Bayesian clustering) were implemented. Our results showed that the 2b-RAD genotyping protocol is effective for R. ecuadoriensis and likely for other triatomine species. However, only BcgI and CspCI restriction enzymes provided a number of markers suitable for population genomic analysis at the read depth we generated. Our preliminary genomic analyses detected a signal of genetic structuring across the study area. Conclusions/Significance: Our findings suggest that 2b-RAD genotyping is both a cost effective and methodologically simple approach for generating high resolution genomic data for Chagas disease vectors with the power to distinguish between different vector populations at epidemiologically relevant scales. As such, 2b-RAD represents a powerful tool in the hands of medical entomologists with limited access to specialized molecular biological equipment. Author summary: Understanding Chagas disease vector (triatomine) population dispersal is key for the design of control measures tailored for the epidemiological situation of a particular region. In Ecuador, Rhodnius ecuadoriensis is a cause of concern for Chagas disease transmission, since it is widely distributed from the central coast to southern Ecuador. Here, a genome-wide sequencing (2b-RAD) approach was performed in 20 specimens from four communities from ManabĂ­ (central coast) and Loja (southern) provinces of Ecuador, and the effectiveness of three type IIB restriction enzymes was assessed. The findings of this study show that this genotyping methodology is cost effective in R. ecuadoriensis and likely in other triatomine species. In addition, preliminary population genomic analysis results detected a signal of population structure among geographically distinct communities and genetic variability within communities. As such, 2b-RAD shows significant promise as a relatively low-tech solution for determination of vector population genomics, dynamics, and spread

    A phorbol ester-binding protein is required downstream of Rab5 in endosome fusion

    Get PDF
    AbstractPrevious observations indicate that a zinc and phorbol ester binding factor is necessary for endosome fusion. To further characterize the role of this factor in the process, we used an in vitro endosome fusion assay supplemented with recombinant Rab5 proteins. Both zinc depletion and addition of calphostin C, an inhibitor of protein kinase C, inhibited endosome fusion in the presence of active Rab5. Addition of the phorbol ester PMA (phorbol 12-myristate 13-acetate) reversed the inhibition of endosome fusion caused by a Rab5 negative mutant. Moreover, PMA stimulated fusion in the presence of Rab5 immunodepleted cytosol. These results suggest that the phorbol ester binding protein is acting downstream of Rab5 in endosome fusion

    α-SNAP Prevents Docking of the Acrosome during Sperm Exocytosis because It Sequesters Monomeric Syntaxin

    Get PDF
    α-SNAP has an essential role in membrane fusion that consists of bridging cis SNARE complexes to NSF. α-SNAP stimulates NSF, which releases itself, α-SNAP, and individual SNAREs that subsequently re-engage in the trans arrays indispensable for fusion. α-SNAP also binds monomeric syntaxin and NSF disengages the α-SNAP/syntaxin dimer. Here, we examine why recombinant α-SNAP blocks secretion in permeabilized human sperm despite the fact that the endogenous protein is essential for membrane fusion. The only mammalian organism with a genetically modified α-SNAP is the hyh mouse strain, which bears a M105I point mutation; males are subfertile due to defective sperm exocytosis. We report here that recombinant α-SNAP-M105I has greater affinity for the cytosolic portion of immunoprecipitated syntaxin than the wild type protein and in consequence NSF is less efficient in releasing the mutant. α-SNAP-M105I is a more potent sperm exocytosis blocker than the wild type and requires higher concentrations of NSF to rescue its effect. Unlike other fusion scenarios where SNAREs are subjected to an assembly/disassembly cycle, the fusion machinery in sperm is tuned so that SNAREs progress uni-directionally from a cis configuration in resting cells to monomeric and subsequently trans arrays in cells challenged with exocytosis inducers. By means of functional and indirect immunofluorescense assays, we show that recombinant α-SNAPs — wild type and M105I — inhibit exocytosis because they bind monomeric syntaxin and prevent this SNARE from assembling with its cognates in trans. Sequestration of free syntaxin impedes docking of the acrosome to the plasma membrane assessed by transmission electron microscopy. The N-terminal deletion mutant α-SNAP-(160–295), unable to bind syntaxin, affects neither docking nor secretion. The implications of this study are twofold: our findings explain the fertility defect of hyh mice and indicate that assembly of SNAREs in trans complexes is essential for docking

    Modelling phagosomal lipid networks that regulate actin assembly

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>When purified phagosomes are incubated in the presence of actin under appropriate conditions, microfilaments start growing from the membrane in a process that is affected by ATP and the lipid composition of the membrane. Isolated phagosomes are metabolically active organelles that contain enzymes and metabolites necessary for lipid interconversion. Hence, addition of ATP, lipids, and actin to the system alter the steady-state composition of the phagosomal membrane at the same time that the actin nucleation is initiated. Our aim was to model all these processes in parallel.</p> <p>Results</p> <p>We compiled detailed experimental data on the effects of different lipids and ATP on actin nucleation and we investigated experimentally lipid interconversion and ATP metabolism in phagosomes by using suitable radioactive compounds.</p> <p>In a first step, a complex lipid network interconnected by chemical reactions catalyzed by known enzymes was modelled in COPASI (Complex Pathway Simulator). However, several lines of experimental evidence indicated that only the phosphatidylinositol branch of the network was active, an observation that dramatically reduced the number of parameters in the model. The results also indicated that a lipid network-independent ATP-consuming activity should be included in the model. When this activity was introduced, the set of differential equations satisfactorily reproduced the experimental data. On the other hand, a molecular mechanism connecting membrane lipids, ATP, and the actin nucleation process is still missing. We therefore adopted a phenomenological (black-box) approach to represent the empirical observations. We proposed that lipids and ATP influence the dynamic interconversion between active and inactive actin nucleation sites. With this simple model, all the experimental data were satisfactorily fitted with a single positive parameter per lipid and ATP.</p> <p>Conclusion</p> <p>By establishing an active 'dialogue' between an initial complex model and experimental observations, we could narrow the set of differential equations and parameters required to characterize the time-dependent changes of metabolites influencing actin nucleation on phagosomes. For this, the global model was dissected into three sub-models: ATP consumption, lipid interconversion, and nucleation of actin on phagosomal membranes. This scheme allowed us to describe this complex system with a relatively small set of differential equations and kinetic parameters that satisfactorily reproduced the experimental data.</p

    The role of adjuvants in therapeutic protection against paracoccidioidomycosis after immunization with the P10 peptide

    Get PDF
    Paracoccidioidomycosis (PCM), a common chronic mycosis in Latin America, is a granulomatous systemic disease caused by the thermo-dimorphic fungus Paracoccidioides brasiliensis. The glycoprotein gp43 is the main antigen target of P. brasiliensis and a 15-mer internal peptide (QTLIAIHTLAIRYAN), known as P10, defines a major CD4+-specific T cell epitope. Previous results have indicated that, besides having a preventive role in conventional immunizations prior to challenge with the fungus, protective anti-fungal effects can be induced in P. brasiliensis-infected mice treated with P10 administered with complete Freund’s adjuvant (CFA). The peptide elicits an IFN-Îł-dependent Th1 immune response and is the main candidate for effective immunotherapy of patients with PCM, as an adjunctive approach to conventional chemotherapy. In the present study we tested the therapeutic effects of P10 combined with different adjuvants [aluminum hydroxide, CFA, flagellin, and the cationic lipid dioctadecyl-dimethylammonium bromide (DODAB)] in BALB/c mice previously infected with the P. brasiliensis Pb18 strain. Significant reductions in the number of colony forming units of the fungus were detected in lungs of mice immunized with P10 associated with the different adjuvants 52 days after infection. Mice treated with DODAB and P10, followed by mice treated with P10 and flagellin, showed the most prominent effects as demonstrated by the lowest numbers of viable yeast cells as well as reductions in granuloma formation and fibrosis. Concomitantly, secretion of IFN-Îł and TNF-α, in contrast to interleukin (IL)-4 and IL-10, was enhanced in the lungs of mice immunized with P10 in combination with the tested adjuvants, with the best results observed in mice treated with P10 and DODAB. In conclusion, the present results demonstrate that the co-administration of the synthetic P10 peptide with several adjuvants, particularly DODAB, have significant therapeutic effects in experimental PCM

    WRONG WAY HOME: AN INFANT SOUTHERN ELEPHANT SEAL (MIROUNGA LEONINA) ARRIVAL ON SOUTHEASTERN BRAZILIAN BEACHES

    Get PDF
    ABSTRACTRecords of southern elephant seals (Mirounga leonina) as vagrants along the SE Brazilian coast date back the late 50’s and have been relatively common over the last decades. These large marine mammals usually call much attention when they arrive on tropical beaches worldwide and are generally treated as ‘occasional visitors’ and ‘vagrants’. This note reports on sightings of a youngelephant seal along SE Brazil in the summer and autumn of 2020. We also reviewed records in both the literature and open sources, totaling eight records of infant southern elephant seals known since the late 70’s along the Brazilian coast. It was noted that the arrival of an infant in February of 2020is coincident with a previous cyclonic activity off the SE and NE Brazilian coast. The connection of such unlikely records of pinnipeds on tropical beaches and extreme weather events associated to ocean currents should be better evaluated in the context of climatic change RESUMOÉ reportada uma ocorrĂȘncia recente de um infante de elefante-marinho (Mirounga leonina) na costa do estado do Rio de Janeiro com um intervalo aproximado de um mĂȘs entre as avistagens do mesmo indivĂ­duo. A comparação das fotografias obtidas em ambos os registros permitiu a comparação e confirmação. Em adição, se discute a presença de infantes na costa brasileira, que totalizam oito casos, mas que nĂŁo apontam uma sazonalidade marcada, mas uma tendĂȘncia aos registros serem reportados em junho, seguido por outubro e novembro. Como o presente registro se deu em janeiro, pico do verĂŁo, fatores climĂĄticos de larga escala podem estar atuando para deslocar alguns indivĂ­duos muito ao longe das suas colĂŽnias.Palavras-chave: Mirounga leonina; Movimentos; Vagante; AtlĂąntico Sul

    A PCR-mutagenesis strategy for rapid detection of mutations in codon 634 of the ret proto-oncogene related to MEN 2A.

    Get PDF
    BACKGROUND: Multiple endocrine neoplasias type 2A (MEN 2A) is a dominantly inherited cancer syndrome. Missence mutations in the codon encoding cysteine 634 of the ret proto-oncogene have been found in 85% of the MEN 2A families. The main tumour type always present in MEN 2A is medullar thyroid carcinoma (MTC). Only 25% of all MTC are hereditary, and generally they are identified by a careful family history. However, some familial MTCs are not easily detected by this means and underdiagnosis of MEN 2A is suspected. METHODS: DNA samples from MEN 2A patients were amplified by PCR. The products were incubated with the restriction enzyme Bst ApI or Bgl I. The samples were loaded in non-denaturing 10% Polyacrilamyde Gel and run at 120 volts for 40 min. The gels were stained with 10 ÎŒg/ml ethidium bromide, and the bands were visualized under a UV lamp. RESULTS: We developed a PCR-mutagenic method to check the integrity of the three bases of the cysteine 634 codon. CONCLUSION: The method can be used to detect inherited mutations in MTC patients without a clear family history. The method is relatively simple to use as a routine test in these patients to decrease the underdiagnosis of MEN 2A. In addition, the assay can be used to screen affected families with any mutation in cysteine 634

    Sperm from Hyh Mice Carrying a Point Mutation in αSNAP Have a Defect in Acrosome Reaction

    Get PDF
    Hydrocephalus with hop gait (hyh) is a recessive inheritable disease that arose spontaneously in a mouse strain. A missense mutation in the Napa gene that results in the substitution of a methionine for isoleucine at position 105 (M105I) of αSNAP has been detected in these animals. αSNAP is a ubiquitous protein that plays a key role in membrane fusion and exocytosis. In this study, we found that male hyh mice with a mild phenotype produced morphologically normal and motile sperm, but had a strongly reduced fertility. When stimulated with progesterone or A23187 (a calcium ionophore), sperm from these animals had a defective acrosome reaction. It has been reported that the M105I mutation affects the expression but not the function of the protein. Consistent with an hypomorphic phenotype, the testes and epididymides of hyh mice had low amounts of the mutated protein. In contrast, sperm had αSNAP levels indistinguishable from those found in wild type cells, suggesting that the mutated protein is not fully functional for acrosomal exocytosis. Corroborating this possibility, addition of recombinant wild type αSNAP rescued exocytosis in streptolysin O-permeabilized sperm, while the mutant protein was ineffective. Moreover, addition of recombinant αSNAP. M105I inhibited acrosomal exocytosis in permeabilized human and wild type mouse sperm. We conclude that the M105I mutation affects the expression and also the function of αSNAP, and that a fully functional αSNAP is necessary for acrosomal exocytosis, a key event in fertilization

    ADP ribosylation factor 6 (ARF6) promotes acrosomal exocytosis by modulating lipid turnover and Rab3A activation.

    Get PDF
    Regulated secretion is a central issue for the specific function of many cells; for instance, mammalian sperm acrosomal exocytosis is essential for egg fertilization. ARF6 (ADP-ribosylation factor 6) is a small GTPase implicated in exocytosis, but its downstream effectors remain elusive in this process. We combined biochemical, functional, and microscopy-based methods to show that ARF6 is present in human sperm, localizes to the acrosomal region, and is required for calcium and diacylglycerol-induced exocytosis. Results from pulldown assays show that ARF6 exchanges GDP for GTP in sperm challenged with different exocytic stimuli. Myristoylated and guanosine 5'-3-O-(thio)triphosphate (GTPÎłS)-loaded ARF6 (active form) added to permeabilized sperm induces acrosome exocytosis even in the absence of extracellular calcium. We explore the ARF6 signaling cascade that promotes secretion. We demonstrate that ARF6 stimulates a sperm phospholipase D activity to produce phosphatidic acid and boosts the synthesis of phosphatidylinositol 4,5-bisphosphate. We present direct evidence showing that active ARF6 increases phospholipase C activity, causing phosphatidylinositol 4,5-bisphosphate hydrolysis and inositol 1,4,5-trisphosphate-dependent intra-acrosomal calcium release. We show that active ARF6 increases the exchange of GDP for GTP on Rab3A, a prerequisite for secretion. We propose that exocytic stimuli activate ARF6, which is required for acrosomal calcium efflux and the assembly of the membrane fusion machinery. This report highlights the physiological importance of ARF6 as a key factor for human sperm exocytosis and fertilization.journal articleresearch support, non-u.s. gov't2015 Apr 102015 02 20importe
    • 

    corecore