8 research outputs found

    Predictors of outcome for severely emotionally disturbed children in treatment

    Get PDF
    Despite general agreement that severely emotionally disturbed children and adolescents are an "at risk" group, and that ongoing evaluation and research into the effectiveness of services provided for them is important, very little outcome evaluation actually takes place. The absence of well-conducted and appropriately interpreted studies is particularly notable for day or residential treatment programs, which cater for the most severely emotionally disturbed youths. This thesis outlines the main areas of conceptual, pragmatic and methodological confusion and neglect which impede progress in research in this area. It argues for plurality of data analytic strategies and research designs. It then critically reviews the reported findings about the effectiveness of day and residential treatment in specialist facilities, and the predictors of good outcomes for this treatment type. This review confirms that there is very little to guide practice. Having argued for the legitimacy of its methods and the necessity to address basic questions, the thesis reports the results of a naturalistic study based on data accumulated during a decade-long evaluative research program taking place at Arndell Child and Adolescent Unit, Sydney. The study addresses the question of what child, family and treatment variables predict outcome for 159 children and adolescents treated at this facility from 1990 to 1999. Statistically significant results with large effect size were obtained. Among the most disturbed subgroup of forty three children, (a) psychodynamic milieu-based treatment was shown to be more effective than the “empirically-validated” cognitive-behavioural treatment which superseded it in 1996, and (b) children from step-families showed better outcome than those from other family structures. Furthermore, it was found for the study sample as a whole that severe school-based problem behaviours were associated with a limited trajectory of improvement in home-based problem behaviour. These results are discussed with regard to implications for treatment, research methodology, policy and further studies

    In vitro-virtual-reality: an anatomically explicit musculoskeletal simulation powered by in vitro muscle using closed loop tissue-software interaction

    Get PDF
    Muscle force-length dynamics are governed by intrinsic contractile properties, motor stimulation and mechanical load. Although intrinsic properties are well-characterised, physiologists lack in vitro instrumentation accounting for combined effects of limb inertia, musculoskeletal architecture and contractile dynamics. We introduce in vitro virtual-reality (in vitro-VR) which enables in vitro muscle tissue to drive a musculoskeletal jumping simulation. In hardware, muscle force from a frog plantaris was transmitted to a software model where joint torques, inertia and ground reaction forces were computed to advance the simulation at 1 kHz. To close the loop, simulated muscle strain was returned to update in vitro length. We manipulated 1) stimulation timing and, 2) the virtual muscle's anatomical origin. This influenced interactions among muscular, inertial, gravitational and contact forces dictating limb kinematics and jump performance. We propose that in vitro-VR can be used to illustrate how neuromuscular control and musculoskeletal anatomy influence muscle dynamics and biomechanical performance

    Chironomidae (Insecta: Diptera) from the eastern Canadian Arctic and subarctic with descriptions of new life stages, a possible new genus, and new geographical records

    No full text
    Chironomidae larvae constituted the largest proportion of benthic invertebrates collected from 99 rivers stretching from northern Labrador (latitude 58°N) to northern parts of Ellesmere Island (82°N). We describe 92 species of Chironomidae (mainly larval forms) providing new descriptions, a revision for the adult female of Parametriocnemus boreoalpinus Gowin et Thienemann, a possible new genus (larval form only), and 9 larval forms that may represent a new species. In addition, new geographical distribution records are specified for 1 Nearctic species, 6 species in Canada, 10 for Labrador, and 17 for Nunavut. This work contributes to Environment Canada’s International Polar Year output (2007-2009)

    Optimal workloop energetics of muscle-actuated systems: an impedance view

    Get PDF
    Integrative approaches to studying the coupled dynamics of skeletal muscles with their loads while under neural control have focused largely on questions pertaining to the postural and dynamical stability of animals and humans. Prior studies have focused on how the central nervous system actively modulates muscle mechanical impedance to generate and stabilize motion and posture. However, the question of whether muscle impedance properties can be neurally modulated to create favorable mechanical energetics, particularly in the context of periodic tasks, remains open. Through muscle stiffness tuning, we hypothesize that a pair of antagonist muscles acting against a common load may produce significantly more power synergistically than individually when impedance matching conditions are met between muscle and load. Since neurally modulated muscle stiffness contributes to the coupled muscle-load stiffness, we further anticipate that power-optimal oscillation frequencies will occur at frequencies greater than the natural frequency of the load. These hypotheses were evaluated computationally by applying optimal control methods to a bilinear muscle model, and also evaluated through in vitro measurements on frog Plantaris longus muscles acting individually and in pairs upon a mass-spring-damper load. We find a 7-fold increase in mechanical power when antagonist muscles act synergistically compared to individually at a frequency higher than the load natural frequency. These observed behaviors are interpreted in the context of resonance tuning and the engineering notion of impedance matching. These findings suggest that the central nervous system can adopt strategies to harness inherent muscle impedance in relation to external loads to attain favorable mechanical energetics.DARPA Biomolecular Motors Program (award N66001-02-C-8034)MIT Media La
    corecore