95 research outputs found

    Durability assessment of soft elastomeric capacitor skin for SHM of wind turbine blades

    Get PDF
    Renewable energy production has become a key research driver during the last decade. Wind energy represents a ready technology for large-scale implementation in locations all around the world. While important research is conducted to optimize wind energy production efficiency, a critical issue consists of monitoring the structural integrity and functionality of these large structures during their operational life cycle. This paper investigates the durability of a soft elastomeric capacitor strain sensing membrane, designed for structural health monitoring of wind turbines, when exposed to aggressive environmental conditions. The sensor is a capacitor made of three thin layers of an SEBS polymer in a sandwich configuration. The inner layer is doped with titania and acts as the dielectric, while the external layers are filled with carbon black and work as the conductive plates. Here, a variety of samples, not limited to the sensor configuration but also including its dielectric layer, were fabricated and tested within an accelerated weathering chamber (QUV) by simulating thermal, humidity, and UV radiation cycles. A variety of other tests were performed in order to characterize their mechanical, thermal, and electrical performance in addition to their solar reflectance. These tests were carried out before and after the QUV exposures of 1, 7, 15, and 30 days. The tests showed that titania inclusions improved the sensor durability against weathering. These findings contribute to better understanding the field behavior of these skin sensors, while future developments will concern the analysis of the sensing properties of the skin after aging

    Percutaneous Left Atrial Appendage Occlusion: An Emerging Option in Patients with Atrial Fibrillation at High Risk of Bleeding

    Get PDF
    Atrial fibrillation (AF) is a common cardiac arrhythmia with an estimated prevalence of 1% in the general population. It is associated with an increased risk of ischemic stroke, silent cerebral ischemia, and cognitive impairment. Due to the blood flow stasis and morphology, thrombus formation occurs mainly in the left atrial appendage (LAA), particularly in the setting of nonvalvular AF (NVAF). Previous studies have shown that >90% of emboli related to NVAF originate from the LAA, thus prevention of systemic cardioembolism is indicated. According to the current guidelines, anticoagulant therapy with direct oral anticoagulants (DOACs) or vitamin K antagonists (VKAs), represents the standard of care in AF patients, in order to prevent ischemic stroke and peripheral embolization. Although these drugs are widely used and DOACs have shown, compared to VKAs, non-inferiority for stroke prevention with significantly fewer bleeding complications, some issues remain a matter of debate, including contraindications, side effects, and adherence. An increasing number of patients, indeed, because of high bleeding risk or after experiencing life-threatening bleedings, must take anticoagulants with extreme caution if not contraindicated. While surgical closure or exclusion of LAA has been historically used in patients with AF with contradictory results, in the recent years, a novel procedure has emerged to prevent the cardioembolic stroke in these patients: The percutaneous left atrial appendage occlusion (LAAO). Different devices have been developed in recent years, though not all of them are approved in Europe and some are still under clinical investigation. Currently available devices have shown a significant decrease in bleeding risk while maintaining efficacy in preventing thromboembolism. The procedure can be performed percutaneously through the femoral vein access, under general anesthesia. A transseptal puncture is required to access left atrium and is guided by transesophageal echocardiography (TEE). Evidence from the current literature indicates that percutaneous LAAO represents a safe alternative for those patients with contraindications for long-term oral anticoagulation. This review summarizes scientific evidences regarding LAAO for stroke prevention including clinical indications and an adequate patient selection

    Endophytic and rhizospheric bacterial communities isolated from the medicinal plants Echinacea purpurea and Echinacea angustifolia

    Get PDF
    In this work we analyzed the composition and structure of cultivable bacterial communities isolated from the stem/leaf and root compartments of two medicinal plants, Echinacea purpurea (L.) Moench and Echinacea angustifolia (DC.) Hell, grown in the same soil, as well as the bacterial community from their rhizospheric soils. Molecular PCR-based techniques were applied to cultivable bacteria isolated from the three compartments of the two plants. The results showed that the two plants and their respective compartments were characterized by different communities, indicating a low degree of strain sharing and a strong selective pressure within plant tissues. Pseudomonas was the most highly represented genus, together with Actinobacteria and Bacillus spp. The presence of distinct bacterial communities in different plant species and among compartments of the same plant species could account for the differences in the medicinal properties of the two plants. [Int Microbiol 2014; 17(3):165-174]Keywords: Echinacea purpurea · Echinacea angustifolia · rhizosphere · medicinal plants · endophyte

    Italian experiences in the management of andrological patients at the time of Coronavirus pandemic.

    Get PDF
    The SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2) was first reported in December 2019, then its rapid spread around the world caused a global pandemic in March 2020 recording a high death rate. The epicenter of the victims moved from Asia to Europe and then to the United States. In this Pandemic, the different governance mechanisms adopted by local health regional authorities made the difference in terms of contagiousness and mortality together with a community strong solidarity. This document analyzes the andrological urgencies management in public hospitals and in private practice observed in Italy and in particular in the most affected Italian Regions: Emilia-Romagna and Marche

    Non-pegylated liposomal doxorubicin in older adjuvant early breast cancer patients: cardiac safety analysis and final results of the COLTONE study

    Get PDF
    Aims: To explore the cardiac safety of adjuvant Non-Pegylated Liposomal Doxorubicin (NPL-DOX) plus Cyclophosphamide (CTX) followed by weekly Paclitaxel, in elderly women (≥ 65 years) with high-risk breast cancer. Previously, we described no symptomatic cardiac events within the first 12 months from starting treatment. We now reported the updated results after a median follow-up 76 months. Methods: The cardiac activity was evaluated with left ventricular ejection fraction (LVEF) echocardiograms assessments, before starting chemotherapy and every 6 months, until 30 months from baseline, then yearly for at least 5 years. Results: Forty-seven women were recruited by two Units of Medical Oncology (Ethics Committee authorization CESM-AOUP, 3203/2011; EudraCT identification number: 2010-024067-41, for Pisa and Pontedera Hospitals). An episode of grade 3 CHF (NCI-CTCAE, version 3.0) occurred after 18 months the beginning of chemotherapy. The echocardiograms assessments were performed comparing the LVEF values of each patient evaluated at fixed period of time, compared to baseline. We observed a slight changed in terms of mean values at 48, 60, 72 and 84 months. At these time points, a statistically significant reduction of - 3.2%, - 4.6%, - 6.4% and - 7.1%, respectively, was observed. However, LVEF remained above 50% without translation in any relevant clinical signs. No other cardiac significant episodes were reported. To this analysis, in 13 patients (28%) occurred disease relapse and,  of them, 11 (23%) died due to metastatic disease. Eight patients died of cancer-unrelated causes. Conclusions: The combination including NPL-DOX in elderly patients revealed low rate of cardiac toxic effects. Comparative trials are encouraged

    XIPE: the X-ray Imaging Polarimetry Explorer

    Full text link
    X-ray polarimetry, sometimes alone, and sometimes coupled to spectral and temporal variability measurements and to imaging, allows a wealth of physical phenomena in astrophysics to be studied. X-ray polarimetry investigates the acceleration process, for example, including those typical of magnetic reconnection in solar flares, but also emission in the strong magnetic fields of neutron stars and white dwarfs. It detects scattering in asymmetric structures such as accretion disks and columns, and in the so-called molecular torus and ionization cones. In addition, it allows fundamental physics in regimes of gravity and of magnetic field intensity not accessible to experiments on the Earth to be probed. Finally, models that describe fundamental interactions (e.g. quantum gravity and the extension of the Standard Model) can be tested. We describe in this paper the X-ray Imaging Polarimetry Explorer (XIPE), proposed in June 2012 to the first ESA call for a small mission with a launch in 2017 but not selected. XIPE is composed of two out of the three existing JET-X telescopes with two Gas Pixel Detectors (GPD) filled with a He-DME mixture at their focus and two additional GPDs filled with pressurized Ar-DME facing the sun. The Minimum Detectable Polarization is 14 % at 1 mCrab in 10E5 s (2-10 keV) and 0.6 % for an X10 class flare. The Half Energy Width, measured at PANTER X-ray test facility (MPE, Germany) with JET-X optics is 24 arcsec. XIPE takes advantage of a low-earth equatorial orbit with Malindi as down-link station and of a Mission Operation Center (MOC) at INPE (Brazil).Comment: 49 pages, 14 figures, 6 tables. Paper published in Experimental Astronomy http://link.springer.com/journal/1068

    Scientific report of the project COMpton Polarimeter with Avalanche Silicon readout (COMPASS)

    Get PDF
    Rendicontazione scientifica mandata all'INAF alla conclusione del progetto COMpton Polarimeter with Avalanche Silicon readout (COMPASS), finanziato dal bando TECNO INAF 2014COMpton Polarimeter with Avalanche Silicon readout (COMPASS) is a research and development project that aims to measure the polarization of X-ray photons through Compton Scattering. The measurement is obtained by using a set of small rods of fast scintillation materials with both low-Z (as active scatterer) and high-Z (as absorber), all read-out with Silicon Photomultipliers. By this method we can operate scattering and absorbing elements in coincidence, in order to reduce the background. This is the scientific report submitted to INAF at the end of the COMPASS project, funded through the grant TECNO INAF 201

    Discovery of X-ray polarization angle rotation in active galaxy Mrk 421

    Full text link
    The magnetic field conditions in astrophysical relativistic jets can be probed by multiwavelength polarimetry, which has been recently extended to X-rays. For example, one can track how the magnetic field changes in the flow of the radiating particles by observing rotations of the electric vector position angle Ψ\Psi. Here we report the discovery of a Ψx\Psi_{\mathrm x} rotation in the X-ray band in the blazar Mrk 421 at an average flux state. Across the 5 days of Imaging X-ray Polarimetry Explorer (IXPE) observations of 4-6 and 7-9 June 2022, Ψx\Psi_{\mathrm x} rotated in total by 360\geq360^\circ. Over the two respective date ranges, we find constant, within uncertainties, rotation rates (80±980 \pm 9 and 91±8/day91 \pm 8 ^\circ/\rm day) and polarization degrees (Πx=10%±1%\Pi_{\mathrm x}=10\%\pm1\%). Simulations of a random walk of the polarization vector indicate that it is unlikely that such rotation(s) are produced by a stochastic process. The X-ray emitting site does not completely overlap the radio/infrared/optical emission sites, as no similar rotation of Ψ\Psi was observed in quasi-simultaneous data at longer wavelengths. We propose that the observed rotation was caused by a helical magnetic structure in the jet, illuminated in the X-rays by a localized shock propagating along this helix. The optically emitting region likely lies in a sheath surrounding an inner spine where the X-ray radiation is released
    corecore