100 research outputs found

    Position estimation delays in signal injection-based sensorless PMSM drives

    Get PDF
    The causes of position estimation delays and their effects on the sensorless control of permanent magnet synchronous motor drives are investigated. The position of a permanent magnet synchronous machine is estimated via the injection of high frequency voltage signals. The delays under investigation are due to the digital implementation of the control algorithm and to the digital filters adopted for decoupling the inspection signals from the fundamental components of the stator current measures. If not correctly modeled and compensated, such delays can reduce the performance of the control scheme. Experimental results are provided, proving the accuracy of the modeling approach and the effectiveness of the related compensation strateg

    Biomanufacturing of a Chitosan/Collagen Scaffold to Drive Adhesion and Alignment of Human Cardiomyocyte Derived from Stem Cells☆

    Get PDF
    Abstract The in vitro generation of a three-dimensional (3D) myocardial tissue employing cells, biomaterials, and biomolecules is a promising strategy in cardiac tissue regeneration. Despite significant progresses in this field, cellular models are not yet able to provide a source of myocardial cells that will efficiently integrate and substitute damaged myocardial tissue. Stem cell-derived human cardiomyocytes (CMs) represent the most promising source for cardiac cell therapy. In order to sustain attachment, spreading, and orientation of human CMs on a scaffold we exploited an innovative negative replica patterning based on electrophoretic deposition to realize multi-scale micro-structured chitosan-collagen (C/C) scaffolds. Specific patterns were micro-structured on the cathode titanium disks using a laser machine. Cubic and hexagonal patterns were deeply characterized, and reproduced on the surface of the C/C scaffold. We initially challenged different blend with spontaneous contracting neonatal rat CMs to identificate the best substratum, finding that C/C 5:1 proportion can better sustain this type of culture. Finally, human CMs derived from induced pluripotent stem cells were seeded on these patterned scaffolds and colonization of the substrate was observed, thus confirming the validity of the chosen biomaterial. Moreover, preliminary experiments demonstrate the effectiveness of the pattern in controlling the orientation of human CMs. In conclusion, we designed and fabricated a scaffold that allows the attachment, spreading, and orientation of human CMs due to a correct C/C blend composition, to an innovative manufacturing process, and to an effective 3D architecture of the patterns. These data will surely help in solving the quest for a cardiac clinical patch

    Applications to cancer research of "lab-on-a-chip" devices based on dielectrophoresis (DEP).

    Get PDF
    The recent development of advanced analytical and bioseparation methodologies based on microarrays and biosensors is one of the strategic objectives of the so-called post-genomic. In this field, the development of microfabricated devices could bring new opportunities in several application fields, such as predictive oncology, diagnostics and anti-tumor drug research. The so called "Laboratory-on-a-chip technology", involving miniaturisation of analytical procedures, is expected to enable highly complex laboratory testing to move from the central laboratory into non-laboratory settings. The main advantages of Lab-on-a-chip devices are integration of multiple steps of different analytical procedures, large variety of applications, sub-microliter consumption of reagents and samples, and portability. One of the requirement for new generation Lab-on-a-chip devices is the possibility to be independent from additional preparative/analytical instruments. Ideally, Lab-on-a-chip devices should be able to perform with high efficiency and reproducibility both actuating and sensing procedures. In this review, we discuss applications of dielectrophoretic(DEP)-based Lab-on-a-chip devices to cancer research. The theory of dielectrophoresis as well as the description of several devices, based on spiral-shaped, parallel and arrayed electrodes are here presented. In addition, in this review we describe manipulation of cancer cells using advanced DEP-based Lab-on-a-chip devices in the absence of fluid flow and with the integration of both actuating and sensing procedures

    Design of 2D chitosan scaffolds via electrochemical structuring

    Get PDF
    Chitosan (CS) is a versatile biopolymer whose morphological and chemico-physical properties can be designed for a variety of biomedical applications. Taking advantage of its electrolytic nature, cathodic polarization allows CS deposition on electrically conductive substrates, resulting in thin porous structures with tunable morphology. Here we propose an easy method to obtain CS membranes with highly oriented micro-channels for tissue engineering applications, relying on simple control of process parameters and cathodic substrate geometry. Cathodic deposition was performed on two different aluminum grids in galvanostatic conditions at 6.25 mA cm(-2) from CS solution [1g L(-1)] in acetic acid (pH 3.5). Self-standing thin scaffolds were cross linked either with genipin or epichlorohydrin, weighted, and observed by optical and electron microscopy. Swelling properties at pH 5 and pH 7.4 have been also investigated and tensile tests performed on swollen samples at room temperature. Finally, direct and indirect assays have been performed to evaluate the cytotoxicity at 24 and 72 h. Thin scaffolds with two different oriented porosities (1000 m and 500 m) have been successfully fabricated by electrochemical techniques. Both cross-linking agents did not affected the mechanical properties and cytocompatibility of the resulting structures. Depending on the pH, these structures show interesting swelling properties that can be exploited for drug delivery systems. Moreover, thanks to the possibility of controlling the porosity and the micro-channel orientation, they should be used for the regeneration of tissues requiring a preferential cells orientation, e.g., cardiac patches or ligament regeneration

    Wavelet-Based Linear-Response Time-Dependent Density-Functional Theory

    Full text link
    Linear-response time-dependent (TD) density-functional theory (DFT) has been implemented in the pseudopotential wavelet-based electronic structure program BigDFT and results are compared against those obtained with the all-electron Gaussian-type orbital program deMon2k for the calculation of electronic absorption spectra of N2 using the TD local density approximation (LDA). The two programs give comparable excitation energies and absorption spectra once suitably extensive basis sets are used. Convergence of LDA density orbitals and orbital energies to the basis-set limit is significantly faster for BigDFT than for deMon2k. However the number of virtual orbitals used in TD-DFT calculations is a parameter in BigDFT, while all virtual orbitals are included in TD-DFT calculations in deMon2k. As a reality check, we report the x-ray crystal structure and the measured and calculated absorption spectrum (excitation energies and oscillator strengths) of the small organic molecule N-cyclohexyl-2-(4-methoxyphenyl)imidazo[1,2-a]pyridin-3-amine

    Cadmium Induces p53-Dependent Apoptosis in Human Prostate Epithelial Cells

    Get PDF
    Cadmium, a widespread toxic pollutant of occupational and environmental concern, is a known human carcinogen. The prostate is a potential target for cadmium carcinogenesis, although the underlying mechanisms are still unclear. Furthermore, cadmium may induce cell death by apoptosis in various cell types, and it has been hypothesized that a key factor in cadmium-induced malignant transformation is acquisition of apoptotic resistance. We investigated the in vitro effects produced by cadmium exposure in normal or tumor cells derived from human prostate epithelium, including RWPE-1 and its cadmium-transformed derivative CTPE, the primary adenocarcinoma 22Rv1 and CWR-R1 cells and LNCaP, PC-3 and DU145 metastatic cancer cell lines. Cells were treated for 24 hours with different concentrations of CdCl2 and apoptosis, cell cycle distribution and expression of tumor suppressor proteins were analyzed. Subsequently, cellular response to cadmium was evaluated after siRNA-mediated p53 silencing in wild type p53-expressing RWPE-1 and LNCaP cells, and after adenoviral p53 overexpression in p53-deficient DU145 and PC-3 cell lines. The cell lines exhibited different sensitivity to cadmium, and 24-hour exposure to different CdCl2 concentrations induced dose- and cell type-dependent apoptotic response and inhibition of cell proliferation that correlated with accumulation of functional p53 and overexpression of p21 in wild type p53-expressing cell lines. On the other hand, p53 silencing was able to suppress cadmium-induced apoptosis. Our results demonstrate that cadmium can induce p53-dependent apoptosis in human prostate epithelial cells and suggest p53 mutation as a possible contributing factor for the acquisition of apoptotic resistance in cadmium prostatic carcinogenesis

    ECLAPTE: Effective Closure of LAParoTomy in Emergency-2023 World Society of Emergency Surgery guidelines for the closure of laparotomy in emergency settings

    Get PDF
    Laparotomy incisions provide easy and rapid access to the peritoneal cavity in case of emergency surgery. Incisional hernia (IH) is a late manifestation of the failure of abdominal wall closure and represents frequent complication of any abdominal incision: IHs can cause pain and discomfort to the patients but also clinical serious sequelae like bowel obstruction, incarceration, strangulation, and necessity of reoperation. Previous guidelines and indications in the literature consider elective settings and evidence about laparotomy closure in emergency settings is lacking. This paper aims to present the World Society of Emergency Surgery (WSES) project called ECLAPTE (Effective Closure of LAParoTomy in Emergency): the final manuscript includes guidelines on the closure of emergency laparotomy

    Bifidobatteri come probiotici: caratterizzazione e miglioramento genetico

    No full text
    Dottorato di ricerca in biocatalisi applicata e fermentazioni industriali. 12. ciclo. Coordinatore Pier Giorgio PifferiConsiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7 , Rome; Biblioteca Nazionale Centrale - P.za Cavalleggeri, 1, Florence / CNR - Consiglio Nazionale delle RichercheSIGLEITItal
    corecore