37 research outputs found

    The role of turbulent pressure as a coherent pulsational driving mechanism: the case of the delta Scuti star HD 187547

    Get PDF
    HD 187547 was the first candidate that led to the suggestion that solar-like oscillations are present in delta Scuti stars. Longer observations, however, show that the modes interpreted as solar-like oscillations have either very long mode lifetimes, longer than 960 days, or are coherent. These results are incompatible with the nature of `pure' stochastic excitation as observed in solar-like stars. Nonetheless, one point is certain: the opacity mechanism alone cannot explain the oscillation spectrum of HD 187547. Here we present new theoretical investigations showing that convection dynamics can intrinsically excite coherent pulsations in the chemically peculiar delta Scuti star HD 187547. More precisely, it is the perturbations of the mean Reynold stresses (turbulent pressure) that drives the pulsations and the excitation takes place predominantly in the hydrogen ionization zone.Comment: 8 pages, 4 figures, accepted to Ap

    Effective induction heating around strongly magnetized stars

    Full text link
    Planets that are embedded in the changing magnetic fields of their host stars can experience significant induction heating in their interiors caused by the planet's orbital motion. For induction heating to be substantial, the planetary orbit has to be inclined with respect to the stellar rotation and dipole axes. Using WX~UMa, for which the rotation and magnetic axes are aligned, as an example, we show that for close-in planets on inclined orbits, induction heating can be stronger than the tidal heating occurring inside Jupiter's satellite Io; namely, it can generate a surface heat flux exceeding 2\,W\,m−2^{-2}. An internal heating source of such magnitude can lead to extreme volcanic activity on the planet's surface, possibly also to internal local magma oceans, and to the formation of a plasma torus around the star aligned with the planetary orbit. A strongly volcanically active planet would eject into space mostly SO2_2, which would then dissociate into oxygen and sulphur atoms. Young planets would also eject CO2_2. Oxygen would therefore be the major component of the torus. If the O{\sc i} column density of the torus exceeds ≈\approx1012^{12}\,cm−2^{-2}, the torus could be revealed by detecting absorption signatures at the position of the strong far-ultraviolet O{\sc i} triplet at about 1304\,\AA. We estimate that this condition is satisfied if the O{\sc i} atoms in the torus escape the system at a velocity smaller than 1--10\,km\,s−1^{-1}. These estimates are valid also for a tidally heated planet.Comment: 8 pages, 6 figures, accepted for publication in Ap

    Model atmospheres of chemically peculiar stars: Self-consistent empirical stratified model of HD24712

    Full text link
    High-resolution spectra of some chemically peculiar stars clearly demonstrate the presence of strong abundance gradients in their atmospheres. However, these inhomogeneities are usually ignored in the standard scheme of model atmosphere calculations, braking the consistency between model structure and spectroscopically derived abundance pattern. In this paper we present first empirical self-consistent stellar atmosphere model of roAp star HD24712, with stratification of chemical elements included, and which is derived directly from the observed profiles of spectral lines without time-consuming simulations of physical mechanisms responsible for these anomalies. We used the LLmodels stellar model atmosphere code and DDAFIT minimization tool for analysis of chemical elements stratification and construction of self-consistent atmospheric model. Empirical determination of Pr and Nd stratification in the atmosphere of HD24712 is based on NLTE line formation for Prii/iii and Ndii/iii with the use of the DETAIL code. Based on iterative procedure of stratification analysis and subsequent re-calculation of model atmosphere structure we constructed a self-consistent model of HD24712, i.e. the model which temperature-pressure structure is consistent with results of stratification analysis. It is shown that stratification of chemical elements leads to the considerable changes in model structure as to compare with non-stratified homogeneous case. We find that accumulation of REE elements allows for the inverse temperature gradient to be present in upper atmosphere of the star with the maximum temperature increase of about 600K.Comment: Comments: Accepted by A&A, 16 pages, 10 figures, 3 table

    Direct evidence of a full dipole flip during the magnetic cycle of a sun-like star

    Get PDF
    Context. The behaviour of the large-scale dipolar field, during a star’s magnetic cycle, can provide valuable insight into the stellar dynamo and associated magnetic field manifestations such as stellar winds. Aims. We investigate the temporal evolution of the dipolar field of the K dwarf 61 Cyg A using spectropolarimetric observations covering nearly one magnetic cycle equivalent to two chromospheric activity cycles. Methods. The large-scale magnetic field geometry is reconstructed using Zeeman Doppler imaging, a tomographic inversion technique. Additionally, the chromospheric activity is also monitored. Results. The observations provide an unprecedented sampling of the large-scale field over a single magnetic cycle of a star other than the Sun. Our results show that 61 Cyg A has a dominant dipolar geometry except at chromospheric activity maximum. The dipole axis migrates from the southern to the northern hemisphere during the magnetic cycle. It is located at higher latitudes at chromospheric activity cycle minimum and at middle latitudes during cycle maximum. The dipole is strongest at activity cycle minimum and much weaker at activity cycle maximum. Conclusions. The behaviour of the large-scale dipolar field during the magnetic cycle resembles the solar magnetic cycle. Our results are further confirmation that 61 Cyg A indeed has a large-scale magnetic geometry that is comparable to the Sun’s, despite being a slightly older and cooler K dwarf

    Magnetic fields and chemical peculiarities of the very young intermediate-mass binary system HD 72106

    Full text link
    The recently discovered magnetic Herbig Ae and Be stars may provide qualitatively new information about the formation and evolution of magnetic Ap and Bp stars. We have performed a detailed investigation of one particularly interesting binary system with a Herbig Ae secondary and a late B-type primary possessing a strong, globally ordered magnetic field. Twenty high-resolution Stokes V spectra of the system were obtained with the ESPaDOnS instrument mounted on the CFHT. In these observations we see clear evidence for a magnetic field in the primary, but no evidence for a magnetic field in the secondary. A detailed abundance analysis was performed for both stars, revealing strong chemical peculiarities in the primary and normal chemical abundances in the secondary. The primary is strongly overabundant in Si, Cr, and other iron-peak elements, as well as Nd, and underabundant in He. The primary therefore appears to be a very young Bp star. In this context, line profile variations of the primary suggest non-uniform lateral distributions of surface abundances. Interpreting the 0.63995 +/- 0.00009 day variation period of the Stokes I and V profiles as the rotational period of the star, we have modeled the magnetic field geometry and the surface abundance distributions of Si, Ti, Cr and Fe using Magnetic Doppler Imaging. We derive a dipolar geometry of the surface magnetic field, with a polar strength of 1230 G and an obliquity of 57 degrees. The distributions Ti, Cr and Fe are all qualitatively similar, with an elongated patch of enhanced abundance situated near the positive magnetic pole. The Si distribution is somewhat different, and its relationship to the magnetic field geometry less clear.Comment: Accepted by Monthly Notices of the Royal Astronomical Society, September 2008. 15 pages, 10 figure

    Life Beyond the Solar System: Space Weather and Its Impact on Habitable Worlds

    Get PDF
    The search of life in the Universe is a fundamental problem of astrobiology and a major priority for NASA. A key area of major progress since the NASA Astrobiology Strategy 2015 (NAS15) has been a shift from the exoplanet discovery phase to a phase of characterization and modeling of the physics and chemistry of exoplanetary atmospheres, and the development of observational strategies for the search for life in the Universe by combining expertise from four NASA science disciplines including heliophysics, astrophysics, planetary science and Earth science. The NASA Nexus for Exoplanetary System Science (NExSS) has provided an efficient environment for such interdisciplinary studies. Solar flares, coronal mass ejections and solar energetic particles produce disturbances in interplanetary space collectively referred to as space weather, which interacts with the Earth upper atmosphere and causes dramatic impact on space and ground-based technological systems. Exoplanets within close in habitable zones around M dwarfs and other active stars are exposed to extreme ionizing radiation fluxes, thus making exoplanetary space weather (ESW) effects a crucial factor of habitability. In this paper, we describe the recent developments and provide recommendations in this interdisciplinary effort with the focus on the impacts of ESW on habitability, and the prospects for future progress in searching for signs of life in the Universe as the outcome of the NExSS workshop held in Nov 29 - Dec 2, 2016, New Orleans, LA. This is one of five Life Beyond the Solar System white papers submitted by NExSS to the National Academy of Sciences in support of the Astrobiology Science Strategy for the Search for Life in the Universe.Comment: 5 pages, the white paper was submitted to the National Academy of Sciences in support of the Astrobiology Science Strategy for the Search for Life in the Univers

    The magnetic Bp star 36 Lyncis, I. Magnetic and photospheric properties

    Get PDF
    This paper reports the photospheric, magnetic and circumstellar gas characteristics of the magnetic B8p star 36 Lyncis (HD 79158). Using archival data and new polarised and unpolarised high-resolution spectra, we redetermine the basic physical properties, the rotational period and the geometry of the magnetic field, and the photospheric abundances of various elements.}{Based on magnetic and spectroscopic measurements, we infer an improved rotational period of 3.83475±0.000023.83475\pm 0.00002 d. We determine a current epoch of the longitudinal magnetic field positive extremum (HJD 2452246.033), and provide constraints on the geometry of the dipole magnetic field (i\geq 56\degr, 3210G≀Bd≀39303210 {\rm G}\leq B_{\rm d}\leq 3930 G, ÎČ\beta unconstrained). We redetermine the effective temperature and surface gravity using the optical and UV energy distributions, optical photometry and Balmer line profiles (Teff=13300±300T_{\rm eff}=13300\pm 300 K, log⁥g=3.7−4.2\log g=3.7-4.2), and based on the Hipparcos parallax we redetermine the luminosity, mass, radius and true rotational speed (L=2.54±0.16L⊙,M=4.0±0.2M⊙,R=3.4±0.7R⊙,veq=45−61.5L=2.54\pm 0.16 L_\odot, M=4.0\pm 0.2 M_\odot, R=3.4\pm 0.7 R_\odot, v_{\rm eq}=45-61.5 \kms). We measure photospheric abundances for 21 elements using optical and UV spectra, and constrain the presence of vertical stratification of these elements. We perform preliminary Doppler Imaging of the surface distribution of Fe, finding that Fe is distributed in a patchy belt near the rotational equator. Most remarkably, we confirm strong variations of the Hα\alpha line core which we interpret as due to occultations of the star by magnetically-confined circumstellar gas.Comment: Accepted by Astronomy and Astrophysic
    corecore