448 research outputs found

    Interfacial Issues and Modification of Solid Electrolyte Interphase for Li Metal Anode in Liquid and Solid Electrolytes

    Get PDF
    The high energy density required for the next generation of lithium batteries will likely be enabled by a shift toward lithium metal anode from the conventional intercalation-based anode such as graphite. However, several critical challenges for Li metal originate from its highly reactive nature and the hostless reaction of deposition and stripping impede the practical use of Li metal as an anode. The role of the solid electrolyte interphase (SEI) is very important for the Li metal anode where the SEI must protect the dynamically changing surface of the Li metal. Since the SEI-generating reaction mechanisms for the two different electrolyte systems, liquid and solid, are considerably different, the SEI layers formed between the Li metal and the electrolytes in the two electrolyte systems have substantially different properties, causing different interfacial issues. Inhibition of the interfacial problems requires different strategies to reinforce the SEI layer for each of the electrolyte systems. However, the differences in the two electrolyte systems have not been clearly compared in the prior literature. In this report, the interfacial issues for the two different electrolyte systems are compared and different strategies for SEI modification are provided to overcome the issues

    Perspective - Structure and Stability of the Solid Electrolyte Interphase on Silicon Anodes of Lithium-ion Batteries

    Get PDF
    The solid electrolyte interphase (SEI) acts as a protection layer on the surface the anodes of lithium ion batteries to prevent further electrolyte decomposition. Understanding the fundamental properties of the SEI is essential to the development of high capacity silicon anodes. However, the detailed mechanism of the generation of the evolution of the SEI on the silicon anodes is not fully understood. This manuscript reviews our recent investigations of the SEI on silicon anodes. We have studied the fundamental formation mechanism of the SEI on silicon anodes, along with the evolution which occurs to the SEI upon cycling

    Performance Improvement of Lithium Metal Batteries Enabled By LiBF3CN as a New Electrolyte Additive

    Get PDF
    A newly synthesized electrolyte additive, lithium trifluoro(cyano) borate (LiBF3CN), has been investigated for electrochemical performance improvement of lithium metal batteries. The LiBF3CN has a structure where one fluorine atom of BF4− is substituted with a cyano group (−CN) prepared by the reaction of boron trifluoride etherate with lithium cyanide. The electrochemical performance in symmetric Li/Li cells and NCM523/Li cells is significantly improved upon the incorporation of LiBF3CN as an electrolyte additive into a carbonate-based electrolyte. Extensive characterization of the deposited lithium metal reveals that a thin (≈20 nm) and robust SEI composed of LiNxOy, Li3N and Li2O is formed by the reductive decomposition of the LiBF3CN additive, which plays an important role in decreasing the resistance and stabilizing lithium deposition/stripping. The insight into the substitution effect of a functional group obtained from this work provides guidance for the design of new electrolyte additives

    Spectral line shape of resonant four-wave mixing induced by broad-bandwidth lasers

    No full text
    We present a theoretical and experimental study of the line shape of resonant four-wave mixing induced by broad-bandwidth laser radiation that revises the theory of Meacher, Smith, Ewart, and Cooper (MSEC) [Phys. Rev. A 46, 2718 (1992)]. We adopt the same method as MSEC but correct for an invalid integral used to average over the distribution of atomic velocities. The revised theory predicts a Voigt line shape composed of a homogeneous, Lorentzian component, defined by the collisional rate Γ, and an inhomogeneous, Doppler component, which is a squared Gaussian. The width of the inhomogeneous component is reduced by a factor of √2 compared to the simple Doppler width predicted by MSEC. In the limit of dominant Doppler broadening, the width of the homogeneous component is predicted to be 4Γ, whereas in the limit of dominant homogeneous broadening, the predicted width is 2Γ. An experimental measurement is reported of the line shape of the four-wave-mixing signal using a broad-bandwidth, "modeless", laser resonant with the Q1 (6) line of the A2 Σ - X2 Π(0,0) system of the hydroxyl radical. The measured widths of the Voigt components were found to be consistent with the predictions of the revised theory

    L2 series solutions of the Dirac equation for power-law potentials at rest mass energy

    Full text link
    We obtain solutions of the three dimensional Dirac equation for radial power-law potentials at rest mass energy as an infinite series of square integrable functions. These are written in terms of the confluent hypergeometric function and chosen such that the matrix representation of the Dirac operator is tridiagonal. The "wave equation" results in a three-term recursion relation for the expansion coefficients of the spinor wavefunction which is solved in terms of orthogonal polynomials. These are modified versions of the Meixner-Pollaczek polynomials and of the continuous dual Hahn polynomials. The choice depends on the values of the angular momentum and the power of the potential.Comment: 13 pages, 1 Tabl

    Strong rejuvenation in a chiral-glass superconductor

    Full text link
    The glassy paramagnetic Meissner phase of a Bi2_2Sr2_2CaCu2_2Ox_x superconductor (xx = 8.18) is investigated by squid magnetometry, using ``dc-memory'' experiments employed earlier to study spin glasses. The temperature dependence of the zero-field-cooled and thermo-remanent magnetization is recorded on re-heating after specific cooling protocols, in which single or multiple halts are performed at constant temperatures. The 'spin' states equilibrated during the halts are retrieved on re-heating. The observed memory and rejuvenation effects are similar to those observed in Heisenberg-like spin glasses.Comment: REVTeX 4 style; 5 pages, 5 figure

    Circulating adrenomedullin estimates survival and reversibility of organ failure in sepsis: the prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock-1 (AdrenOSS-1) study

    Get PDF
    Background: Adrenomedullin (ADM) regulates vascular tone and endothelial permeability during sepsis. Levels of circulating biologically active ADM (bio-ADM) show an inverse relationship with blood pressure and a direct relationship with vasopressor requirement. In the present prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock 1 (, AdrenOSS-1) study, we assessed relationships between circulating bio-ADM during the initial intensive care unit (ICU) stay and short-term outcome in order to eventually design a biomarker-guided randomized controlled trial. Methods: AdrenOSS-1 was a prospective observational multinational study. The primary outcome was 28-day mortality. Secondary outcomes included organ failure as defined by Sequential Organ Failure Assessment (SOFA) score, organ support with focus on vasopressor/inotropic use, and need for renal replacement therapy. AdrenOSS-1 included 583 patients admitted to the ICU with sepsis or septic shock. Results: Circulating bio-ADM levels were measured upon admission and at day 2. Median bio-ADM concentration upon admission was 80.5 pg/ml [IQR 41.5-148.1 pg/ml]. Initial SOFA score was 7 [IQR 5-10], and 28-day mortality was 22%. We found marked associations between bio-ADM upon admission and 28-day mortality (unadjusted standardized HR 2.3 [CI 1.9-2.9]; adjusted HR 1.6 [CI 1.1-2.5]) and between bio-ADM levels and SOFA score (p < 0.0001). Need of vasopressor/inotrope, renal replacement therapy, and positive fluid balance were more prevalent in patients with a bio-ADM > 70 pg/ml upon admission than in those with bio-ADM ≀ 70 pg/ml. In patients with bio-ADM > 70 pg/ml upon admission, decrease in bio-ADM below 70 pg/ml at day 2 was associated with recovery of organ function at day 7 and better 28-day outcome (9.5% mortality). By contrast, persistently elevated bio-ADM at day 2 was associated with prolonged organ dysfunction and high 28-day mortality (38.1% mortality, HR 4.9, 95% CI 2.5-9.8). Conclusions: AdrenOSS-1 shows that early levels and rapid changes in bio-ADM estimate short-term outcome in sepsis and septic shock. These data are the backbone of the design of the biomarker-guided AdrenOSS-2 trial. Trial registration: ClinicalTrials.gov, NCT02393781. Registered on March 19, 2015

    First operational BRDF, albedo nadir reflectance products from MODIS

    Get PDF
    With the launch of NASA’s Terra satellite and the MODerate Resolution Imaging Spectroradiometer (MODIS), operational Bidirectional Reflectance Distribution Function (BRDF) and albedo products are now being made available to the scientific community. The MODIS BRDF/Albedo algorithm makes use of a semiempirical kernel-driven bidirectional reflectance model and multidate, multispectral data to provide global 1-km gridded and tiled products of the land surface every 16 days. These products include directional hemispherical albedo (black-sky albedo), bihemispherical albedo (white-sky albedo), Nadir BRDF-Adjusted surface Reflectances (NBAR), model parameters describing the BRDF, and extensive quality assurance information. The algorithm has been consistently producing albedo and NBAR for the public since July 2000. Initial evaluations indicate a stable BRDF/Albedo Product, where, for example, the spatial and temporal progression of phenological characteristics is easily detected in the NBAR and albedo results. These early beta and provisional products auger well for the routine production of stable MODIS-derived BRDF parameters, nadir reflectances, and albedos for use by the global observation and modeling communities

    Indication for the disappearance of reactor electron antineutrinos in the Double Chooz experiment

    Get PDF
    The Double Chooz Experiment presents an indication of reactor electron antineutrino disappearance consistent with neutrino oscillations. A ratio of 0.944 ±\pm 0.016 (stat) ±\pm 0.040 (syst) observed to predicted events was obtained in 101 days of running at the Chooz Nuclear Power Plant in France, with two 4.25 GWth_{th} reactors. The results were obtained from a single 10 m3^3 fiducial volume detector located 1050 m from the two reactor cores. The reactor antineutrino flux prediction used the Bugey4 measurement as an anchor point. The deficit can be interpreted as an indication of a non-zero value of the still unmeasured neutrino mixing parameter \sang. Analyzing both the rate of the prompt positrons and their energy spectrum we find \sang = 0.086 ±\pm 0.041 (stat) ±\pm 0.030 (syst), or, at 90% CL, 0.015 << \sang  <\ < 0.16.Comment: 7 pages, 4 figures, (new version after PRL referee's comments

    The Value of Global Earth Observations

    Get PDF
    Humankind has never been so populous, technically equipped, and economically and culturally integrated as it is today. In the twenty-first century, societies are confronted with a multitude of challenges in their efforts to manage the Earth system
    • 

    corecore