40 research outputs found
Recommendations and guidelines from the ISMRM Diffusion Study Group for preclinical diffusion MRI: Part 1 -- In vivo small-animal imaging
The value of in vivo preclinical diffusion MRI (dMRI) is substantial.
Small-animal dMRI has been used for methodological development and validation,
characterizing the biological basis of diffusion phenomena, and comparative
anatomy. Many of the influential works in this field were first performed in
small animals or ex vivo samples. The steps from animal setup and monitoring,
to acquisition, analysis, and interpretation are complex, with many decisions
that may ultimately affect what questions can be answered using the data. This
work aims to serve as a reference, presenting selected recommendations and
guidelines from the diffusion community, on best practices for preclinical dMRI
of in vivo animals. In each section, we also highlight areas for which no
guidelines exist (and why), and where future work should focus. We first
describe the value that small animal imaging adds to the field of dMRI,
followed by general considerations and foundational knowledge that must be
considered when designing experiments. We briefly describe differences in
animal species and disease models and discuss how they are appropriate for
different studies. We then give guidelines for in vivo acquisition protocols,
including decisions on hardware, animal preparation, imaging sequences and data
processing, including pre-processing, model-fitting, and tractography. Finally,
we provide an online resource which lists publicly available preclinical dMRI
datasets and software packages, to promote responsible and reproducible
research. An overarching goal herein is to enhance the rigor and
reproducibility of small animal dMRI acquisitions and analyses, and thereby
advance biomedical knowledge.Comment: 69 pages, 6 figures, 1 tabl
qMT simulation framework on the bias induced by on-resonance saturation and dipolar order effects
A MATLAB framework for qMT simulations, associated to the simulation results from the publication "Quantitative magnetization transfer MRI unbiased by on-resonance saturation and dipolar order contributions", Mag. Res. Med. 202
Myelin imaging in MRI using ultra-short echo time sequences
L'évaluation non-invasive de la myéline dans la substance blanche du système nerveux central est fondamentale pour le suivi de pathologies telles que la sclérose en plaques. La myéline est majoritairement constituée de lipides et de protéines : du fait des nombreuses interactions dans ces macromolécules, les temps de relaxation transversale sont très courts (T2 < 1 ms), rendant indétectables ces signaux par des séquences conventionnelles. Les méthodes standards d’imagerie par RMN pour la caractérisation de la myéline reposent sur la modélisation des interactions entre les protons aqueux et la structure myélinisée. Néanmoins, la sélectivité et la robustesse de ces méthodes indirectes peuvent être remises en cause. Les séquences à temps d’écho ultracourt (UTE – TE < 1 ms) permettraient de faire l’acquisition directe des signaux issus de la matrice semi-solide de la myéline. Le développement de telles méthodes pour la mise en contraste positif et sélectif de la myéline sur système préclinique est l’objet de cette thèse. La validation de chacune des méthodes a été menée sur modèle murin ex vivo en confrontant des animaux sains et démyélinisés. Les résultats à partir des méthodes UTE montrent une sélectivité significative à la démyélinisation, suggérant l’adéquation de la technique pour l'évaluation de la myéline dans la substance blanche.Non-invasive evaluation of white matter myelin in the central nervous system is essential for the monitoring of pathologies such as multiple sclerosis. Myelin is essentially composed of lipids and proteins: because of the numerous interactions between these macromolecules, the transverse relaxation times are very short (T2 < 1 ms), and their signals are undetectable using conventional sequences. Standard MRI methods for the characterization of myelin rely on the modeling of the interactions of aqueous protons with myelinated structures. Nonetheless, the selectivity and robustness of such indirect methods are questionable. Ultrashort echo time sequences (UTE – TE < 1 ms) may allow to directly detect the signals arising from the semi-solid spin pool of myelin. The main objective of this thesis consists in developing such methods in order to generate a positive and selective contrast of myelin using a preclinical imaging system. Validation of each method was carried out using an ex vivo murine model by confronting healthy and demyelinated animals. Results show a significant selectivity of the UTE methods to demyelination, suggesting that the technique is promising for white matter myelin monitoring
Imagerie de la myéline par IRM à temps d'écho ultracourt
Non-invasive evaluation of white matter myelin in the central nervous system is essential for the monitoring of pathologies such as multiple sclerosis. Myelin is essentially composed of lipids and proteins: because of the numerous interactions between these macromolecules, the transverse relaxation times are very short (T2 < 1 ms), and their signals are undetectable using conventional sequences. Standard MRI methods for the characterization of myelin rely on the modeling of the interactions of aqueous protons with myelinated structures. Nonetheless, the selectivity and robustness of such indirect methods are questionable. Ultrashort echo time sequences (UTE – TE < 1 ms) may allow to directly detect the signals arising from the semi-solid spin pool of myelin. The main objective of this thesis consists in developing such methods in order to generate a positive and selective contrast of myelin using a preclinical imaging system. Validation of each method was carried out using an ex vivo murine model by confronting healthy and demyelinated animals. Results show a significant selectivity of the UTE methods to demyelination, suggesting that the technique is promising for white matter myelin monitoring.L'évaluation non-invasive de la myéline dans la substance blanche du système nerveux central est fondamentale pour le suivi de pathologies telles que la sclérose en plaques. La myéline est majoritairement constituée de lipides et de protéines : du fait des nombreuses interactions dans ces macromolécules, les temps de relaxation transversale sont très courts (T2 < 1 ms), rendant indétectables ces signaux par des séquences conventionnelles. Les méthodes standards d’imagerie par RMN pour la caractérisation de la myéline reposent sur la modélisation des interactions entre les protons aqueux et la structure myélinisée. Néanmoins, la sélectivité et la robustesse de ces méthodes indirectes peuvent être remises en cause. Les séquences à temps d’écho ultracourt (UTE – TE < 1 ms) permettraient de faire l’acquisition directe des signaux issus de la matrice semi-solide de la myéline. Le développement de telles méthodes pour la mise en contraste positif et sélectif de la myéline sur système préclinique est l’objet de cette thèse. La validation de chacune des méthodes a été menée sur modèle murin ex vivo en confrontant des animaux sains et démyélinisés. Les résultats à partir des méthodes UTE montrent une sélectivité significative à la démyélinisation, suggérant l’adéquation de la technique pour l'évaluation de la myéline dans la substance blanche
Myelin imaging in MRI using ultra-short echo time sequences
L'évaluation non-invasive de la myéline dans la substance blanche du système nerveux central est fondamentale pour le suivi de pathologies telles que la sclérose en plaques. La myéline est majoritairement constituée de lipides et de protéines : du fait des nombreuses interactions dans ces macromolécules, les temps de relaxation transversale sont très courts (T2 < 1 ms), rendant indétectables ces signaux par des séquences conventionnelles. Les méthodes standards d’imagerie par RMN pour la caractérisation de la myéline reposent sur la modélisation des interactions entre les protons aqueux et la structure myélinisée. Néanmoins, la sélectivité et la robustesse de ces méthodes indirectes peuvent être remises en cause. Les séquences à temps d’écho ultracourt (UTE – TE < 1 ms) permettraient de faire l’acquisition directe des signaux issus de la matrice semi-solide de la myéline. Le développement de telles méthodes pour la mise en contraste positif et sélectif de la myéline sur système préclinique est l’objet de cette thèse. La validation de chacune des méthodes a été menée sur modèle murin ex vivo en confrontant des animaux sains et démyélinisés. Les résultats à partir des méthodes UTE montrent une sélectivité significative à la démyélinisation, suggérant l’adéquation de la technique pour l'évaluation de la myéline dans la substance blanche.Non-invasive evaluation of white matter myelin in the central nervous system is essential for the monitoring of pathologies such as multiple sclerosis. Myelin is essentially composed of lipids and proteins: because of the numerous interactions between these macromolecules, the transverse relaxation times are very short (T2 < 1 ms), and their signals are undetectable using conventional sequences. Standard MRI methods for the characterization of myelin rely on the modeling of the interactions of aqueous protons with myelinated structures. Nonetheless, the selectivity and robustness of such indirect methods are questionable. Ultrashort echo time sequences (UTE – TE < 1 ms) may allow to directly detect the signals arising from the semi-solid spin pool of myelin. The main objective of this thesis consists in developing such methods in order to generate a positive and selective contrast of myelin using a preclinical imaging system. Validation of each method was carried out using an ex vivo murine model by confronting healthy and demyelinated animals. Results show a significant selectivity of the UTE methods to demyelination, suggesting that the technique is promising for white matter myelin monitoring
Quantification de la fraction d’eau piégée dans la myéline – Faisabilité et évaluation clinique en SEP
National audienc
Quantification of Myelin Degeneration in Multiple Sclerosis within Clinical Scan Times
International audienc
ihMT simulation framework adapted to the ihMT-GRE sequence at 3 T
*** TITLE: ihMT simulation framework adapted to the ihMT-GRE sequence at 3 T*** DESCRIPTION:A MATLAB framework for ihMT simulations, associated to the simulation results from the publication "A strategy to reduce the sensitivity of inhomogeneous Magnetization Transfer (ihMT) imaging to radiofrequency transmit field variations at 3 T", Mag. Res. Med. 2021*** LIST OF SCRIPTS AND FUNCTIONS:- Fig_3TB1_SIMU_3TR_ihMTRvsB1RMS.m- Fig_3TB1_SIMU_3TR_ihMTRvsFA.m- Fig_3TB1_SIMU_multiTR_dB1.m- Fig_3TB1_SIMU_SI_3TR_MzfMzbvsB1RMS.m- Fig_3TB1_SIMU_SI_FA_apparent_tukey.m- func_simu_ihMT_RAGE.m- parse_par_ihMT_RAGE.m- start_parpool.m- Tools/func_compute_DS_noMT.m- Tools/func_compute_pulse.m- Tools/func_computeW.m- Tools/_pulses/func_Gauss_pulse.m- Tools/_pulses/func_GaussHann_pulse.m- Tools/_pulses/func_HannFun_pulse.m- Tools/_pulses/func_TukeyFun_pulse.m*** LIST OF AUTHORS:Lucas SOUSTELLEAndreea HERTANUGuillaume DUHAMELOlivier M. GIRAR
Towards minimal T1 and B1 contributions in cervical spinal cord inhomogeneous magnetization transfer imaging
International audienc