150 research outputs found

    The expression pattern of dormancy-associated genes in multiple life-history stages in the rotifer Brachionus plicatilis

    Get PDF
    Rotifer resting eggs retain their viability for several decades in a non-desiccated form and are of interest in discerning the processes associated with dormancy, since in most organisms this phenomenon is linked with desiccation. The expression pattern of candidate genes with biological functions associated with dormancy in several other organisms was examined in rotifers. High-throughput transcriptome profiling revealed three patterns of gene expression in resting eggs: (1) relatively highly expressed genes coding for LEA proteins and putative paralogs of the small heat shock protein family (shsp); (2) genes coding for ferritin (ferr), glutathione-6-transferase (gts) and HSP70, where some of the putative gene paralogs of these families show relatively high expression levels and other putative paralogs show relatively low expression levels in resting eggs; and (3) genes with relatively low expression levels in resting eggs, for trehalose-6-phosphate synthase (tps), fatty-acid binding proteins (fab) and of lipoprotein lipase (lpl) and the aquaporins gene family (aqp). Changes in the expression pattern of some members of putative gene families occurred during the obligatory dormant period of resting eggs. A transition was observed from an expression pattern of diapausing embryos to an expression pattern of amictic females, during hatching. Differences were also found in the expression pattern in the different types of females, especially in those carrying resting eggs, and in males compared with females. These results suggest putative functional significance to genes associated with dormancy in non-desiccated resting eggs. It could also be proposed that their occurrence in resting eggs is developmentally programmed to facilitate survival in case of desiccation

    Biochemical Diversification through Foreign Gene Expression in Bdelloid Rotifers

    Get PDF
    Bdelloid rotifers are microinvertebrates with unique characteristics: they have survived tens of millions of years without sexual reproduction; they withstand extreme desiccation by undergoing anhydrobiosis; and they tolerate very high levels of ionizing radiation. Recent evidence suggests that subtelomeric regions of the bdelloid genome contain sequences originating from other organisms by horizontal gene transfer (HGT), of which some are known to be transcribed. However, the extent to which foreign gene expression plays a role in bdelloid physiology is unknown. We address this in the first large scale analysis of the transcriptome of the bdelloid Adineta ricciae: cDNA libraries from hydrated and desiccated bdelloids were subjected to massively parallel sequencing and assembled transcripts compared against the UniProtKB database by blastx to identify their putative products. Of ∼29,000 matched transcripts, ∼10% were inferred from blastx matches to be horizontally acquired, mainly from eubacteria but also from fungi, protists, and algae. After allowing for possible sources of error, the rate of HGT is at least 8%–9%, a level significantly higher than other invertebrates. We verified their foreign nature by phylogenetic analysis and by demonstrating linkage of foreign genes with metazoan genes in the bdelloid genome. Approximately 80% of horizontally acquired genes expressed in bdelloids code for enzymes, and these represent 39% of enzymes in identified pathways. Many enzymes encoded by foreign genes enhance biochemistry in bdelloids compared to other metazoans, for example, by potentiating toxin degradation or generation of antioxidants and key metabolites. They also supplement, and occasionally potentially replace, existing metazoan functions. Bdelloid rotifers therefore express horizontally acquired genes on a scale unprecedented in animals, and foreign genes make a profound contribution to their metabolism. This represents a potential mechanism for ancient asexuals to adapt rapidly to changing environments and thereby persist over long evolutionary time periods in the absence of sex

    BMC Genomics

    No full text
    BACKGROUND Microscopic monogonont rotifers, including the euryhaline species Brachionus plicatilis, are typically found in water bodies where environmental factors restrict population growth to short periods lasting days or months. The survival of the population is ensured via the production of resting eggs that show a remarkable tolerance to unfavorable conditions and remain viable for decades. The aim of this study was to generate Expressed Sequence Tags (ESTs) for molecular characterisation of processes associated with the formation of resting eggs, their survival during dormancy and hatching. RESULTS Four normalized and four subtractive libraries were constructed to provide a resource for rotifer transcriptomics associated with resting-egg formation, storage and hatching. A total of 47,926 sequences were assembled into 18,000 putative transcripts and analyzed using both Blast and GO annotation. About 28-55% (depending on the library) of the clones produced significant matches against the Swissprot and Trembl databases. Genes known to be associated with desiccation tolerance during dormancy in other organisms were identified in the EST libraries. These included genes associated with antioxidant activity, low molecular weight heat shock proteins and Late Embryonic Abundant (LEA) proteins. Real-time PCR confirmed that LEA transcripts, small heat-shock proteins and some antioxidant genes were upregulated in resting eggs, therefore suggesting that desiccation tolerance is a characteristic feature of resting eggs even though they do not necessarily fully desiccate during dormancy. The role of trehalose in resting-egg formation and survival remains unclear since there was no significant difference between resting-egg producing females and amictic females in the expression of the tps-1 gene. In view of the absence of vitellogenin transcripts, matches to lipoprotein lipase proteins suggest that, similar to the situation in dipterans, these proteins may serve as the yolk proteins in rotifers. CONCLUSION: The 47,926 ESTs expand significantly the current sequence resource of B. plicatilis. It describes, for the first time, genes putatively associated with resting eggs and will serve as a database for future global expression experiments, particularly for the further identification of dormancy related genes

    Phonon-induced spin relaxation of conduction electrons in aluminum

    Get PDF
    Spin-flip Eliashberg function αS2F\alpha_S^2F and temperature-dependent spin relaxation time T1(T)T_1(T) are calculated for aluminum using realistic pseudopotentials. The spin-flip electron-phonon coupling constant λS\lambda_S is found to be 2.5×1052.5\times 10^{-5}. The calculations agree with experiments validating the Elliott-Yafet theory and the spin-hot-spot picture of spin relaxation for polyvalent metals.Comment: 4 pages; submitted to PR

    Metabolomics reveals novel insight on dormancy of aquatic invertebrate encysted embryos

    Get PDF
    Numerous aquatic invertebrates survive harsh environments by displaying dormancy as encysted embryos. This study aimed at determining whether metabolomics could provide molecular insight to explain the “dormancy syndrome” by highlighting functional pathways and metabolites, hence offering a novel comprehensive molecular view of dormancy. We compared the metabolome of morphologically distinct dormant encysted embryos (resting eggs) and non-dormant embryos (amictic eggs) of a rotifer (Brachionus plicatilis). Metabolome profiling revealed ~5,000 features, 1,079 of which were annotated. Most of the features were represented at significantly higher levels in non-dormant than dormant embryos. A large number of features was assigned to putative functional pathways indicating novel differences between dormant and non-dormant states. These include features associated with glycolysis, the TCA and urea cycles, amino acid, purine and pyrimidine metabolism. Interestingly, ATP, nucleobases, cyclic nucleotides, thymidine and uracil, were not detected in dormant resting eggs, suggesting an impairment of response to environmental and internal cues, cessation of DNA synthesis, transcription and plausibly translation in the dormant embryos. The levels of trehalose or its analogues, with a role in survival under desiccation conditions, were higher in resting eggs. In conclusion, the current study highlights metabolomics as a major analytical tool to functionally compare dormancy across species.Animal science

    Spin injection and spin accumulation in all-metal mesoscopic spin valves

    Get PDF
    We study the electrical injection and detection of spin accumulation in lateral ferromagnetic metal-nonmagnetic metal-ferromagnetic metal (F/N/F) spin valve devices with transparent interfaces. Different ferromagnetic metals, permalloy (Py), cobalt (Co) and nickel (Ni), are used as electrical spin injectors and detectors. For the nonmagnetic metal both aluminium (Al) and copper (Cu) are used. Our multi-terminal geometry allows us to experimentally separate the spin valve effect from other magneto resistance signals such as the anomalous magneto resistance (AMR) and Hall effects. We find that the AMR contribution of the ferromagnetic contacts can dominate the amplitude of the spin valve effect, making it impossible to observe the spin valve effect in a 'conventional' measurement geometry. In a 'non local' spin valve measurement we are able to completely isolate the spin valve signal and observe clear spin accumulation signals at T=4.2 K as well as at room temperature (RT). For aluminum we obtain spin relaxation lengths (lambda_{sf}) of 1.2 mu m and 600 nm at T=4.2 K and RT respectively, whereas for copper we obtain 1.0 mu m and 350 nm. The spin relaxation times tau_{sf} in Al and Cu are compared with theory and results obtained from giant magneto resistance (GMR), conduction electron spin resonance (CESR), anti-weak localization and superconducting tunneling experiments. The spin valve signals generated by the Py electrodes (alpha_F lambda_F=0.5 [1.2] nm at RT [T=4.2 K]) are larger than the Co electrodes (alpha_F lambda_F=0.3 [0.7] nm at RT [T=4.2 K]), whereas for Ni (alpha_F lambda_F<0.3 nm at RT and T=4.2 K) no spin signal is observed. These values are compared to the results obtained from GMR experiments.Comment: 16 pages, 12 figures, submitted to PR

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio

    Effects of Glyphosate and its Formulation, Roundup, on Reproduction in Zebrafish (Danio rerio)

    Get PDF
    This is an open access article that is freely available in ORE or from the publisher's web site. Please cite the published version.Copyright © 2014 American Chemical SocietyRoundup and its active ingredient glyphosate are among the most widely used herbicides worldwide and may contaminate surface waters. Research suggests both Roundup and glyphosate induce oxidative stress in fish and may also cause reproductive toxicity in mammalian systems. We aimed to investigate the reproductive effects of Roundup and glyphosate in fish and the potential associated mechanisms of toxicity. To do this, we conducted a 21-day exposure of breeding zebrafish (Danio rerio) to 0.01, 0.5, and 10 mg/L (glyphosate acid equivalent) Roundup and 10 mg/L glyphosate. 10 mg/L glyphosate reduced egg production but not fertilization rate in breeding colonies. Both 10 mg/L Roundup and glyphosate increased early stage embryo mortalities and premature hatching. However, exposure during embryogenesis alone did not increase embryo mortality, suggesting that this effect was caused primarily by exposure during gametogenesis. Transcript profiling of the gonads revealed 10 mg/L Roundup and glyphosate induced changes in the expression of cyp19a1 and esr1 in the ovary and hsd3b2, cat, and sod1 in the testis. Our results demonstrate that these chemicals cause reproductive toxicity in zebrafish, although only at high concentrations unlikely to occur in the environment, and likely mechanisms of toxicity include disruption of the steroidogenic biosynthesis pathway and oxidative stress.Natural Environment Research Counci

    Fifteen species in one: deciphering the Brachionus plicatilis species complex (Rotifera, Monogononta) through DNA taxonomy

    Get PDF
    Understanding patterns and processes in biological diversity is a critical task given current and rapid environmental change. Such knowledge is even more essential when the taxa under consideration are important ecological and evolutionary models. One of these cases is the monogonont rotifer cryptic species complex Brachionus plicatilis, which is by far the most extensively studied group of rotifers, is widely used in aquaculture, and is known to host a large amount of unresolved diversity. Here we collate a dataset of previously available and newly generated sequences of COI and ITS1 for 1273 isolates of the B. plicatilis complex and apply three approaches in DNA taxonomy (i.e. ABGD, PTP, and GMYC) to identify and provide support for the existence of 15 species within the complex. We used these results to explore phylogenetic signal in morphometric and ecological traits, and to understand correlation among the traits using phylogenetic comparative models. Our results support niche conservatism for some traits (e.g. body length) and phylogenetic plasticity for others (e.g. genome size)
    corecore