166 research outputs found

    Detection of Polarization in the Cosmic Microwave Background using DASI

    Get PDF
    We report the detection of polarized anisotropy in the Cosmic Microwave Background radiation with the Degree Angular Scale Interferometer (DASI), located at the Amundsen-Scott South Pole research station. Observations in all four Stokes parameters were obtained within two 3.4 FWHM fields separated by one hour in Right Ascension. The fields were selected from the subset of fields observed with DASI in 2000 in which no point sources were detected and are located in regions of low Galactic synchrotron and dust emission. The temperature angular power spectrum is consistent with previous measurements and its measured frequency spectral index is -0.01 (-0.16 -- 0.14 at 68% confidence), where 0 corresponds to a 2.73 K Planck spectrum. The power spectrum of the detected polarization is consistent with theoretical predictions based on the interpretation of CMB anisotropy as arising from primordial scalar adiabatic fluctuations. Specifically, E-mode polarization is detected at high confidence (4.9 sigma). Assuming a shape for the power spectrum consistent with previous temperature measurements, the level found for the E-mode polarization is 0.80 (0.56 -- 1.10), where the predicted level given previous temperature data is 0.9 -- 1.1. At 95% confidence, an upper limit of 0.59 is set to the level of B-mode polarization with the same shape and normalization as the E-mode spectrum. The TE correlation of the temperature and E-mode polarization is detected at 95% confidence, and also found to be consistent with predictions. These results provide strong validation of the underlying theoretical framework for the origin of CMB anisotropy and lend confidence to the values of the cosmological parameters that have been derived from CMB measurements.Comment: 20 pages, 6 figure

    Prognostic significance of anti-p53 and anti-KRas circulating antibodies in esophageal cancer patients treated with chemoradiotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>P53 mutations are an adverse prognostic factor in esophageal cancer. P53 and KRas mutations are involved in chemo-radioresistance. Circulating anti-p53 or anti-KRas antibodies are associated with gene mutations. We studied whether anti-p53 or anti-KRas auto-antibodies were prognostic factors for response to chemoradiotherapy (CRT) or survival in esophageal carcinoma.</p> <p>Methods</p> <p>Serum p53 and KRas antibodies (abs) were measured using an ELISA method in 97 consecutive patients treated at Saint Louis University Hospital between 1999 and 2002 with CRT for esophageal carcinoma (squamous cell carcinoma (SCCE) 57 patients, adenocarcinoma (ACE) 27 patients). Patient and tumor characteristics, response to treatment and the follow-up status of 84 patients were retrospectively collected. The association between antibodies and patient characteristics was studied. Univariate and multivariate survival analyses were conducted.</p> <p>Results</p> <p>Twenty-four patients (28%) had anti-p53 abs. Abs were found predominantly in SCCE (p = 0.003). Anti-p53 abs were associated with a shorter overall survival in the univariate analysis (HR 1.8 [1.03-2.9], p = 0.04). In the multivariate analysis, independent prognostic factors for overall and progression-free survival were an objective response to CRT, the CRT strategy (alone or combined with surgery [preoperative]) and anti-p53 abs. None of the long-term survivors had p53 abs. KRas abs were found in 19 patients (23%, no difference according to the histological type). There was no significant association between anti-KRas abs and survival neither in the univariate nor in the multivariate analysis. Neither anti-p53 nor anti-KRas abs were associated with response to CRT.</p> <p>Conclusions</p> <p>Anti-p53 abs are an independent prognostic factor for esophageal cancer patients treated with CRT. Individualized therapeutic approaches should be evaluated in this population.</p

    CMB Telescopes and Optical Systems

    Full text link
    The cosmic microwave background radiation (CMB) is now firmly established as a fundamental and essential probe of the geometry, constituents, and birth of the Universe. The CMB is a potent observable because it can be measured with precision and accuracy. Just as importantly, theoretical models of the Universe can predict the characteristics of the CMB to high accuracy, and those predictions can be directly compared to observations. There are multiple aspects associated with making a precise measurement. In this review, we focus on optical components for the instrumentation used to measure the CMB polarization and temperature anisotropy. We begin with an overview of general considerations for CMB observations and discuss common concepts used in the community. We next consider a variety of alternatives available for a designer of a CMB telescope. Our discussion is guided by the ground and balloon-based instruments that have been implemented over the years. In the same vein, we compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT). CMB interferometers are presented briefly. We conclude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and Planck, to demonstrate a remarkable evolution in design, sensitivity, resolution, and complexity over the past thirty years.Comment: To appear in: Planets, Stars and Stellar Systems (PSSS), Volume 1: Telescopes and Instrumentatio

    Planck intermediate results. XLI. A map of lensing-induced B-modes

    Get PDF
    The secondary cosmic microwave background (CMB) BB-modes stem from the post-decoupling distortion of the polarization EE-modes due to the gravitational lensing effect of large-scale structures. These lensing-induced BB-modes constitute both a valuable probe of the dark matter distribution and an important contaminant for the extraction of the primary CMB BB-modes from inflation. Planck provides accurate nearly all-sky measurements of both the polarization EE-modes and the integrated mass distribution via the reconstruction of the CMB lensing potential. By combining these two data products, we have produced an all-sky template map of the lensing-induced BB-modes using a real-space algorithm that minimizes the impact of sky masks. The cross-correlation of this template with an observed (primordial and secondary) BB-mode map can be used to measure the lensing BB-mode power spectrum at multipoles up to 20002000. In particular, when cross-correlating with the BB-mode contribution directly derived from the Planck polarization maps, we obtain lensing-induced BB-mode power spectrum measurement at a significance level of 12σ12\,\sigma, which agrees with the theoretical expectation derived from the Planck best-fit Λ\LambdaCDM model. This unique nearly all-sky secondary BB-mode template, which includes the lensing-induced information from intermediate to small (10100010\lesssim \ell\lesssim 1000) angular scales, is delivered as part of the Planck 2015 public data release. It will be particularly useful for experiments searching for primordial BB-modes, such as BICEP2/Keck Array or LiteBIRD, since it will enable an estimate to be made of the lensing-induced contribution to the measured total CMB BB-modes.Comment: 20 pages, 12 figures; Accepted for publication in A&A; The B-mode map is part of the PR2-2015 Cosmology Products; available as Lensing Products in the Planck Legacy Archive http://pla.esac.esa.int/pla/#cosmology; and described in the 'Explanatory Supplement' https://wiki.cosmos.esa.int/planckpla2015/index.php/Specially_processed_maps#2015_Lensing-induced_B-mode_ma

    Characterization of MTAP gene expression in breast cancer patients and cell lines

    Get PDF
    MTAP is a ubiquitously expressed gene important for adenine and methionine salvage. The gene is located at 9p21, a chromosome region often deleted in breast carcinomas, similar to CDKN2A, a recognized tumor suppressor gene. Several research groups have shown that MTAP acts as a tumor suppressor, and some therapeutic approaches were proposed based on a tumors\ub4 MTAP status. We analyzed MTAP and CDKN2A gene (RT-qPCR) and protein (western-blotting) expression in seven breast cancer cell lines and evaluated their promoter methylation patterns to better characterize the contribution of these genes to breast cancer. Cytotoxicity assays with inhibitors of de novo adenine synthesis (5-FU, AZA and MTX) after MTAP gene knockdown showed an increased sensitivity, mainly to 5-FU. MTAP expression was also evaluated in two groups of samples from breast cancer patients, fresh tumors and paired normal breast tissue, and from formalin-fixed paraffin embedded (FFPE) core breast cancer samples diagnosed as Luminal-A tumors and triple negative breast tumors (TNBC). The difference of MTAP expression between fresh tumors and normal tissues was not statistically significant. However, MTAP expression was significantly higher in Luminal-A breast tumors than in TNBC, suggesting the lack of expression in more aggressive breast tumors and the possibility of using the new approaches based on MTAP status in TNB

    Planck intermediate results: LVII. Joint Planck LFI and HFI data processing

    Get PDF
    We present the NPIPE processing pipeline, which produces calibrated frequency maps in temperature and polarization from data from the Planck Low Frequency Instrument (LFI) and High Frequency Instrument (HFI) using high-performance computers. NPIPE represents a natural evolution of previous Planck analysis efforts, and combines some of the most powerful features of the separate LFI and HFI analysis pipelines. For example, following the LFI 2018 processing procedure, NPIPE uses foreground polarization priors during the calibration stage in order to break scanninginduced degeneracies. Similarly, NPIPE employs the HFI 2018 time-domain processing methodology to correct for bandpass mismatch at all frequencies. In addition, NPIPE introduces several improvements, including, but not limited to: inclusion of the 8% of data collected during repointing manoeuvres; smoothing of the LFI reference load data streams; in-flight estimation of detector polarization parameters; and construction of maximally independent detector-set split maps. For component-separation purposes, important improvements include: maps that retain the CMB Solar dipole, allowing for high-precision relative calibration in higher-level analyses; well-defined single-detector maps, allowing for robust CO extraction; and HFI temperature maps between 217 and 857 GHz that are binned into 0.09 pixels (Nside = 4096), ensuring that the full angular information in the data is represented in the maps even at the highest Planck resolutions. The net effect of these improvements is lower levels of noise and systematics in both frequency and component maps at essentially all angular scales, as well as notably improved internal consistency between the various frequency channels. Based on the NPIPE maps, we present the first estimate of the Solar dipole determined through component separation across all nine Planck frequencies. The amplitude is (3366.6 ± 2.7) µK, consistent with, albeit slightly higher than, earlier estimates. From the large-scale polarization data, we derive an updated estimate of the optical depth of reionization of τ = 0.051 ± 0.006, which appears robust with respect to data and sky cuts. There are 600 complete signal, noise and systematics simulations of the full-frequency and detector-set maps. As a Planck first, these simulations include full time-domain processing of the beam-convolved CMB anisotropies. The release of NPIPE maps and simulations is accompanied with a complete suite of raw and processed time-ordered data and the software, scripts, auxiliary data, and parameter files needed to improve further on the analysis and to run matching simulations

    Menopausal hormone use and ovarian cancer risk: individual participant meta-analysis of 52 epidemiological studies

    Get PDF
    Background Half the epidemiological studies with information about menopausal hormone therapy and ovarian cancer risk remain unpublished, and some retrospective studies could have been biased by selective participation or recall. We aimed to assess with minimal bias the effects of hormone therapy on ovarian cancer risk. Methods Individual participant datasets from 52 epidemiological studies were analysed centrally. The principal analyses involved the prospective studies (with last hormone therapy use extrapolated forwards for up to 4 years). Sensitivity analyses included the retrospective studies. Adjusted Poisson regressions yielded relative risks (RRs) versus never-use. Findings During prospective follow-up, 12 110 postmenopausal women, 55% (6601) of whom had used hormone therapy, developed ovarian cancer. Among women last recorded as current users, risk was increased even with <5 years of use (RR 1·43, 95% CI 1·31–1·56; p<0·0001). Combining current-or-recent use (any duration, but stopped <5 years before diagnosis) resulted in an RR of 1·37 (95% CI 1·29–1·46; p<0·0001); this risk was similar in European and American prospective studies and for oestrogen-only and oestrogen-progestagen preparations, but differed across the four main tumour types (heterogeneity p<0·0001), being definitely increased only for the two most common types, serous (RR 1·53, 95% CI 1·40–1·66; p<0·0001) and endometrioid (1·42, 1·20–1·67; p<0·0001). Risk declined the longer ago use had ceased, although about 10 years after stopping long-duration hormone therapy use there was still an excess of serous or endometrioid tumours (RR 1·25, 95% CI 1·07–1·46, p=0·005). Interpretation The increased risk may well be largely or wholly causal; if it is, women who use hormone therapy for 5 years from around age 50 years have about one extra ovarian cancer per 1000 users and, if its prognosis is typical, about one extra ovarian cancer death per 1700 users

    Microsatellite Support for Active Inbreeding in a Cichlid Fish

    Get PDF
    In wild animal populations, the degree of inbreeding differs between species and within species between populations. Because mating with kin often results in inbreeding depression, observed inbreeding is usually regarded to be caused by limited outbreeding opportunities due to demographic factors like small population size or population substructuring. However, theory predicts inclusive benefits from mating with kin, and thus part of the observed variation in inbreeding might be due to active inbreeding preferences. Although some recent studies indeed report kin mating preferences, the evidence is still highly ambiguous. Here, we investigate inbreeding in a natural population of the West African cichlid fish Pelvicachromis taeniatus which showed clear kin mating preferences in standardized laboratory experiments but no inbreeding depression. The presented microsatellite analysis reveals that the natural population has, in comparison to two reference populations, a reduced allelic diversity (A = 3) resulting in a low heterozygosity (Ho = 0.167) pointing to a highly inbred population. Furthermore, we found a significant heterozygote deficit not only at population (Fis = 0.116) but also at subpopulation level (Fis = 0.081) suggesting that inbreeding is not only a by-product of population substructuring but possibly a consequence of behavioral kin preferences

    Planck intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust

    Get PDF
    This paper presents an overview of the polarized sky as seen by Planck HFI at 353 GHz, which is the most sensitive Planck channel for dust polarization. We construct and analyse maps of dust polarization fraction and polarization angle at 1° resolution, taking into account noise bias and possible systematic effects. The sensitivity of the Planck HFI polarization measurements allows for the first time a mapping of Galactic dust polarized emission on large scales, including low column density regions. We find that the maximum observed dust polarization fraction is high (pmax = 19.8%), in particular in some regions of moderate hydrogen column density (NH < 2 × 1021 cm-2). The polarization fraction displays a large scatter at NH below a few 1021 cm-2. There is a general decrease in the dust polarization fraction with increasing column density above NH ≃ 1 × 1021 cm-2 and in particular a sharp drop above NH ≃ 1.5 × 1022 cm-2. We characterize the spatial structure of the polarization angle using the angle dispersion function. We find that the polarization angle is ordered over extended areas of several square degrees, separated by filamentary structures of high angle dispersion function. These appear as interfaces where the sky projection of the magnetic field changes abruptly without variations in the column density. The polarization fraction is found to be anti-correlated with the dispersion of polarization angles. These results suggest that, at the resolution of 1°, depolarization is due mainly to fluctuations in the magnetic field orientation along the line of sight, rather than to the loss of grain alignment in shielded regions. We also compare the polarization of thermal dust emission with that of synchrotron measured with Planck, low-frequency radio data, and Faraday rotation measurements toward extragalactic sources. These components bear resemblance along the Galactic plane and in some regions such as the Fan and North Polar Spur regions. The poor match observed in other regions shows, however, that dust, cosmic-ray electrons, and thermal electrons generally sample different parts of the line of sight. Reproduced with permission, © ESO, 201
    corecore