95 research outputs found

    Azimuthons in weakly nonlinear waveguides of different symmetries

    Full text link
    We show that weakly guiding nonlinear waveguides support stable propagation of rotating spatial solitons (azimuthons). We investigate the role of waveguide symmetry on the soliton rotation. We find that azimuthons in circular waveguides always rotate rigidly during propagation and the analytically predicted rotation frequency is in excellent agreement with numerical simulations. On the other hand, azimuthons in square waveguides may experience spatial deformation during propagation. Moreover, we show that there is a critical value for the modulation depth of azimuthons above which solitons just wobble back and forth, and below which they rotate continuously. We explain these dynamics using the concept of energy difference between different orientations of the azimuthon.Comment: 12 pages, 8 figure

    Fresnel diffraction patterns as accelerating beams

    Get PDF
    We demonstrate that beams originating from Fresnel diffraction patterns are self-accelerating in free space. In addition to accelerating and self-healing, they also exhibit parabolic deceleration property, which is in stark contrast to other accelerating beams. We find that the trajectory of Fresnel paraxial accelerating beams is similar to that of nonparaxial Weber beams. Decelerating and accelerating regions are separated by a critical propagation distance, at which no acceleration is present. During deceleration, the Fresnel diffraction beams undergo self-smoothing, in which oscillations of the diffracted waves gradually focus and smooth out at the critical distance

    Analytical vectorial structure of non-paraxial four-petal Gaussian beams in the far field

    Full text link
    The analytical vectorial structure of non-paraxial four-petal Gaussian beams(FPGBs) in the far field has been studied based on vector angular spectrum method and stationary phase method. In terms of analytical electromagnetic representations of the TE and TM terms, the energy flux distributions of the TE term, the TM term, and the whole beam are derived in the far field, respectively. According to our investigation, the FPGBs can evolve into a number of small petals in the far field. The number of the petals is determined by the order of input beam. The physical pictures of the FPGBs are well illustrated from the vectorial structure, which is beneficial to strengthen the understanding of vectorial properties of the FPGBs

    The influence of carbon nanotubes on the combustion toxicity of PP/intumescent flame retardant composites

    Get PDF
    In recent years, carbon nanotubes (CNTs) have emerged as a promising candidate for improving the flame retardancy of polymer materials, as well as other physical properties. However, few researches have been focused on the influence of this nanoscale material on the combustion toxicity of polymer composites during combustion. In this work, the fire toxicity of polypropylene (PP) composites with intumescent flame retardants (IFRs) and CNTs has been investigated by a Purser Furnace apparatus, which is called steady state tube furnace (SSTF) and enables different fire stages to be created. The Thermo gravimetric analyzer (TGA) and derivative thermo gravimetric analysis (DTG) data indicate that the thermal stability of PP composites was increased by the addition of IFRs or CNTs. However, the SSTF results show that PP samples with IFR or CNTs or both, produced much more carbon monoxide (CO) compared to neat PP during all fire stages, resulting in a much lower CO2/CO ratio. Furthermore, an interesting finding is that the effect of CNTs on the smoke production and CxHy yield of the PP samples during the combustion changes with the combustion equivalence ratio. It indicates that the presence of CNTs promote the formation of smoke particulates from hydrocarbon, but this effect only exist when oxygen supply is not adequate. It is also concluded that the air ventilation and combustion temperature play significant roles in the fire effluent production of PP samples and the morphology of soot particulates

    Vectorial structure of a hard-edged-diffracted four-petal Gaussian beam in the far field

    Full text link
    Based on the vector angular spectrum method and the stationary phase method and the fact that a circular aperture function can be expanded into a finite sum of complex Gaussian functions, the analytical vectorial structure of a four-petal Gaussian beam (FPGB) diffracted by a circular aperture is derived in the far field. The energy flux distributions and the diffraction effect introduced by the aperture are studied and illustrated graphically. Moreover, the influence of the f-parameter and the truncation parameter on the nonparaxiality is demonstrated in detail. In addition, the analytical formulas obtained in this paper can degenerate into un-apertured case when the truncation parameter tends to infinity. This work is beneficial to strengthen the understanding of vectorial properties of the FPGB diffracted by a circular aperture

    Angiopoietin-1 promotes atherosclerosis by increasing the proportion of circulating Gr1+ monocytes

    Get PDF
    Aims Atherosclerosis is a chronic inflammatory disease occurring within the artery wall. A crucial step in atherogenesis is the infiltration and retention of monocytes into the subendothelial space of large arteries induced by chemokines and growth factors. Angiopoietin-1 (Ang-1) regulates angiogenesis and reduces vascular permeability and has also been reported to promote monocyte migration in vitro. We investigated the role of Ang-1 in atherosclerosis-prone apolipoprotein-E (Apo-E) knockout mouse. Methods and results Apo-E knockout (Apo-E-/-) mice fed a western or normal chow diet received a single iv injection of adenovirus encoding Ang-1 or control vector. Adenovirus-mediated systemic expression of Ang-1 induced a significant increase in early atherosclerotic lesion size and monocyte/macrophage accumulation compared with control animals receiving empty vector. Ang-1 significantly increased plasma MCP-1 and VEGF levels as measured by ELISA. FACS analysis showed that Ang-1 selectively increased inflammatory Gr1+ monocytes in the circulation, while the cell-surface expression of CD11b, which mediates monocyte emigration, was significantly reduced. Conclusions Ang-1 specifically increases circulating Gr1+ inflammatory monocytes and increases monocyte/macrophage retention in atherosclerotic plaques, thereby contributing to development of atherosclerosis
    corecore