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Fresnel diffraction patterns as accelerating beams
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Abstract — We demonstrate that beams originating from Fresnel diffraction patterns are self-
accelerating in free space. In addition to accelerating and self-healing, they also exhibit parabolic
deceleration property, which is in stark difference to other accelerating beams. We find that the
trajectory of Fresnel paraxial accelerating beams is similar to that of nonparaxial Weber beams.
Decelerating and accelerating regions are separated by a critical propagation distance, at which no
acceleration is present. During deceleration, the Fresnel diffraction beams undergo self-smoothing,
in which oscillations of the diffracted waves gradually smooth out and are completely gone at the
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Accelerating beams in free space or in linear dielectric
media have attracted a lot of attention in the past decade,
(Y)owing to their interesting properties which include self-
1acceleration, self-healing, and non-diffraction over many
—] Rayleigh lengths [1-5]. Because Airy function is the solu-
() tion of the linear Schrédinger equation [6,7], the reported
« paraxial accelerating beams are all related to the Airy or
SBessel functions [8,9]. Nonparaxial accelerating beams,
+== for example Mathieu and Weber waves, are found by solv-
ing Helmholtz wave equation [10]. To display acceleration
such beams must possess energy distributions which lack
parity symmetry in the transverse direction.
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Airy accelerating beams have also been discovered in
nonlinear media [11-13], Bose-Einstein condensates [14],
on the surface of a gold metal film [15] or on the surface
of silver [16,17], in atomic vapors with electromagneti-
cally induced transparency [18], chiral media [19], pho-
tonic crystals [20], and elsewhere. A wide range of appli-
cations of accelerating beams has already been demon-
strated, for example, for tweezing [21], the generation
of plasma channels [22], material modifications [23], mi-
crolithography [24], light bullet production [5], particle

clearing [25], and manipulation of dielectric microparticles
[26].

In this Letter we search for a new kind of accelerating
beams — those generated in the paraxial propagation of
Fresnel diffraction patterns. We display self-accelerating
and self-healing properties of such beams, first in one di-
mension (diffraction from a straight edge), and then in two
dimensions (diffraction from a corner). We demonstrate
that there exists a critical propagation distance, at which
acceleration stops; before the critical distance the diffrac-
tion patterns decelerate and after the critical distance they
accelerate. During the deceleration phase the interference
oscillations are suppressed, owing to the self-smoothing
effect. Both the deceleration and the acceleration phases
exhibit parabolic trajectories, which appear to be simi-
lar to the trajectories of nonparaxial Weber accelerating
beams.

We begin our analysis by briefly recalling Fresnel diffrac-
tion of plane waves from a straight edge located at x = 0,
which can be viewed as a one-dimensional (1D) case. We
assume z is the transverse coordinate and z the propaga-
tion direction. The normalized amplitude of the diffrac-
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tion pattern is described by [27]

S(x) /Oz sin (g#) dr

are the Fresnel Cosine and Sine integrals [28]. The lim-
iting values of the Sine and Cosine integrals are C(co) =
S(o0) = 3 and C(—o0) = S(—o0) = —1, and the real
and imaginary parts of f(x) in Eq. (1) form the Cornu
spiral, as shown in Fig. 1(a). The two branches of the
spiral approach the points P, and P, with coordinates

(%, %) and (0,0), respectively. Since the ideal f(z) is

not square-integrable, that is fj;o |f(2)|?>dz — oo, it pos-
sesses infinite energy, which is not very realistic. However,
that’s not unusual.

The initial appearance of accelerated beams [6, 8] at-
tracted some controversy, because they were nondiffract-
ing but also of infinite energy in free space and as such
not much physically realistic. However, the same features
are shared by plane waves, which are also unrealistic yet
very useful. The necessity of having finite apertures and
finite-size lenses in the production of nondiffracting beams
meant that some diffraction must be present. By now, this
initial controversy has settled and nondiffracting Airy and
Bessel optical beams have become vibrant part of linear
optics. However, no such controversy exists in nonlinear
optics, where nondiffracting localized beams — solitons —
commonly appear. Hence, we introduce a Gaussian aper-
ture function exp(—az?), to make f(x) square-integrable;
the modified f(x) is written as

g(x) = % [(C(:c) + %) +1i (S(z) + %)} exp(—az?),
(2)

in which a > 0 is the decay factor that connects with the
numerical aperture of the system.

In Figs. 1(b) and 1(c), we display the intensity profiles
as well as numerically observed interference stripes present
in f(z) and g(x). It is seen that the oscillating tail of
f(z) tends to 1 as  — oo, whereas the tail of g(z) tends
to 0, which assures finite energy of the wave packet. In
addition, the energy distribution of g(z) is asymmetric,
which assures self-acceleration of the wave packet [1].

The linear Schrodinger equation for the slowly-varying
envelope of the paraxial wavepacket in free space or in
linear dielectric media in 1D can be written as
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Fig. 1: (Color online) (a) Cornu spiral of f(z) in Eq. (1). (b)
Intensity |f(x)|* versus x. (c) Intensity |g(x)|* versus z, with
a = 0.01. The background images in (b) and (c) depict the
ideal and attenuated diffraction stripes.

in which x and z coordinates are normalized to some typ-
ical transverse size of localized beams xy and to the cor-
responding Rayleigh range kxz3, respectively. One of the
solutions to this equation is the celebrated Airy beam [6]

. 22 6rz — 2°
g(z,z) = Al (1‘ - Z) exp <T> ,

which opened the whole field of linear nondiffracting
beams. For difference, we input Fresnel finite diffraction
pattern g(z) into Eq. (3) and consider what happens.

The evolution of the finite-energy diffraction pattern is
shown in Fig. 2(a). It is seen that the beam acceler-
ates to the right, even though it propagates in the linear
medium. In fact, the intensity maximum of the beam ac-
celerates during propagation along a parabolic trajectory,
as shown by the solid curve. This is characteristic of all
self-accelerating linear beams: high-intensity portions of
the beam accelerate, while the center of mass of the beam
actually moves along a straight line [9]. But, different
from the previous observations [1,2,29], in which the Airy
beam accelerates according to the asymptotics z o< 22, the
diffraction pattern accelerates according to 22 oc z. This
is similar to the accelerating trajectory of a nonparaxial
Weber beam [10, 30].

The self-healing can be seen clearly if a small barrier of
size 0.5 is placed in the path of the main lobe propagation,
at z = 0; the corresponding evolution is shown in Fig.
2(b). The output intensity profiles with and without the
barrier, shown in Fig. 2(c), illustrate that the self-healing
of the main lobe is apparent.

It is worth noting that there appears a new phase at
a short propagation distance. To see the phenomenon
clearly, the short distance propagation from Fig. 2(a) is
enlarged in Fig. 2(d). We find that the diffraction pattern
undergoes —22 o z acceleration firstly, before accelerat-
ing according to 2 o z afterwards. Therefore, the initial
acceleration process is actually a deceleration. During the
deceleration process, the oscillations are suppressed grad-
ually, which actually represents a self-smoothing effect. It
can be explained phenomenologically.
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During deceleration, the interference fringes accumulate
at © = 0 point. Since diffraction stripes cannot appear in
the x < 0 region, x = 0 will be a decelerating destination
for all the lobes. At that point along the z axis — the
critical point — the transverse motion stops, fringes are
gone, and the beam profile becomes smooth. This smooth
intensity profile is shown in Fig. 2(e), recorded at the
critical distance, marked by the dashed line in Fig. 2(d).
The profile looks like a 1D Gaussian beam truncated by
the Heaviside step-function. After the critical propagation
distance, the oscillations reappear and display the usual
22 o z acceleration. If one looks at the motion of the cen-
ter of mass of the beam, during deceleration it approaches
steadily the x = 0 wall, bounces off, and continues to move
steadily away, as the beam accelerates.
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Fig. 2: (Color online) (a) Propagation of g(z). The solid curve
depicts the acceleration of the main lobe. (b) Self-healing of
the beam, visible when the main lobe of g(z) is blocked by a
circular barrier (the white dot). (c) Solid and dashed curves are
intensities at z = 30 corresponding to (a) and (b), respectively.
(d) Same as (a), but for a much shorter propagation distance.
The deceleration phase of the propagation is clearly visible. (e)
Intensity profile at the critical propagation distance, marked by
the dashed line in (d). The value of a is 0.002 in all the cases
shown.

We now analyze the accelerating properties of a two-
dimensional (2D) diffraction pattern, by propagating Fres-
nel diffraction from a right-angle corner located at (x =

0,y = 0). The corresponding diffraction pattern is de-
scribed by
1 ) 1
F(x,y) = [(C(x) + 5) +1 (S(m) + 5)} X

1
2
KC(?J) + %) +1i (S(y) + %)} :

according to Eq. (1). To make the wave packet of finite
energy, we still introduce a Gaussian decaying aperture,
so that Eq. (4) is modified as

G(z,y) = F(z,y) exp [~a(z® +y°)] . ()
The diffraction patterns based on Egs. (4) and (5) are
shown in Figs. 3(al) and 3(a2), respectively. It is clear
that the ideal 2D diffraction pattern is not square inte-
grable, whereas the truncated one is finite-energy, similar

to the 2D finite-energy Airy beam [1]. Furthermore, the
right-angle corner diffraction can be easily generalized to
2D acute or obtuse angle Fresnel diffraction, as shown in
Figs. 3(b) and 3(c). This could be done, for example, by
utilizing the Lorentz transformation of coordinates [31]:

&' =z cosh[—(1/2) tanh™ ! (cos 0)]+
(1/2) tanh™ " (cos 0)],

y =z sinh[—(1/2) tanh ™" (cos #)]+
y cosh[—(1/2) tanh ™" (cos §)],

ysinh[—

where 0 < 6 < 7 is the angle at the corner, and z’ and
y’ the oblique axes coordinates. Substituting (z,y) by
(2',y") in Egs. (4) and (5), one transforms the Fresnel in-
tegrals into the oblique diffraction patterns. Figures 3(b1)
and 3(cl) represent ideal diffraction patterns, while Figs.
3(b2) and 3(c2) show the corresponding truncated ones.
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Fig. 3: (Color online) (al) Fresnel diffraction pattern at a right-
angle corner. (bl) and (cl) Fresnel diffraction patterns with
0 = /3 and 27/3, respectively. (a2)-(c2) Truncated Fresnel
diffraction patterns according to (al)-(cl) with a = 0.02, re-
spectively. (d1)-(f1) Fresnel diffraction patterns from a wedge
with angles /3, 7/2, and 27/3, respectively. (d2)-(f2) Trun-
cated diffraction patterns corresponding to (d1)-(f1).

If the angle of the corner is bigger than 7, it can be
viewed as a diffraction from a corner of a wedge. For
this case, the analytical expression for an ideal diffraction
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pattern can be written as

2
KC(:::) + %) +i <3(m) + %)] «
(—C(y) T %) +i (—S(y) + %)] +
K—am) + %) i (—5@) + %)} «
<C(y) + %) +1 (S(y) + %)] .

Based on this formula and the Lorentz transformation,
one can obtain the 2D Fresnel diffraction pattern from a
wedge with an angle 0 < 0 < 7. In Figs. 3(d)-3(f), we
display diffraction patterns with 6 being 7/3, 7/2, and
27 /3, respectively.

For the 2D propagation case, Eq. (3) should be modified
into

0G 1 [ 9? 9?2
5‘1‘5(@-‘1-8—%)(;—0. (7)

By inputting the diffraction pattern from Fig. 3(a2) into
Eq. (7), the evolution of the truncated 2D Fresnel diffrac-
tion pattern can be investigated. We consider right away
the more interesting case where a small circular barrier is
placed diagonally, to block the propagation of the main
lobe. In Fig. 4(a), we exhibit the evolution trajectory of
the main lobe that is projected onto x0z or y0z plane by
the solid curve. It is seen that the pattern displays ac-
celeration along a parabolic profile and that there is still
a critical propagation distance, marked by the dot (e) in
Fig. 4(a). To the left and right of the dot, two pieces
of parabola are seen. To roughly fit the numerically ob-
tained decelerating and accelerating trajectories, we intro-
duce two ansatzes as

T1 =28 — 21,
Tog =24/29 — @,

which are depicted in the figure by the dashed curves. As
is evident, the ansatzes fit the numerical results quite well.
We note that the fluctuations seen in the solid curve result
not from the oscillations in the profiles but from not having
high enough numerical accuracy. These fluctuations do
not affect the decelerating or accelerating trends visible
overall.

In Figs. 4(b1)-4(b3), we show the intensity images of
the 2D diffraction pattern at the input (z = 0), the criti-
cal propagation distance, and the output (z = 10), respec-
tively. Since there are no oscillations in the beam at the
critical distance, the self-smoothing effect is still in effect.
The maximum intensity profile, located at (x = 0,y = 0),
which is the decelerating destination of all the lobes, is
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Fig. 4: (Color online) (a) Decelerating and accelerating trajec-
tories of the two-dimensional truncated diffraction pattern for
a = 0.002. The dot (e) marks the critical distance. Solid
and dashed curves correspond to the numerical and fitted
results.  (b1)-(b3) Two-dimensional finite-energy diffraction
beams shown at the input, at the critical point, and at the
output, respectively.

still described by the 1D case shown in Fig. 2(e). In ad-
dition, similar results hold for the cases shown in Figs.
3(d2)-3(f2); they also display a critical propagation dis-
tance and the self-smoothing effect. Therefore, we do not
discuss here the corresponding numerical results.

In conclusion, we have demonstrated that Fresnel
diffraction patterns can be viewed as accelerating beams,
which also exhibit self-accelerating and self-healing prop-
erties. Different from Airy accelerating beams, the new ac-
celerating beams introduced in this Letter exhibit deceler-
ation and strong self-smoothing effect at the critical prop-
agation distance. Right at the critical distance the oscil-
lations in the Fresnel diffraction beam disappear, and be-
yond this point the oscillations reappear again. It is worth
noticing that the accelerating process follows parabolic
trajectory, similar to Weber beams; however, the propa-
gation can be divided into two regions. Before the critical
propagation distance, the beam decelerates according to
—2x? o z; after the critical point, the beam accelerates ac-
cording to 22 o z. Our research not only demonstrates a
new kind of accelerating beam, but also broadens people’s
understanding on Fresnel diffraction.
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