95 research outputs found

    Massive disk formation in the tidal disruption of a neutron star by a nearly extremal black hole

    Get PDF
    Black hole-neutron star (BHNS) binaries are important sources of gravitational waves for second-generation interferometers, and BHNS mergers are also a proposed engine for short, hard gamma-ray bursts. The behavior of both the spacetime (and thus the emitted gravitational waves) and the neutron star matter in a BHNS merger depend strongly and nonlinearly on the black hole's spin. While there is a significant possibility that astrophysical black holes could have spins that are nearly extremal (i.e. near the theoretical maximum), to date fully relativistic simulations of BHNS binaries have included black-hole spins only up to S/M2S/M^2=0.9, which corresponds to the black hole having approximately half as much rotational energy as possible, given the black hole's mass. In this paper, we present a new simulation of a BHNS binary with a mass ratio q=3q=3 and black-hole spin S/M2S/M^2=0.97, the highest simulated to date. We find that the black hole's large spin leads to the most massive accretion disk and the largest tidal tail outflow of any fully relativistic BHNS simulations to date, even exceeding the results implied by extrapolating results from simulations with lower black-hole spin. The disk appears to be remarkably stable. We also find that the high black-hole spin persists until shortly before the time of merger; afterwards, both merger and accretion spin down the black hole.Comment: 20 pages, 10 figures, submitted to Classical and Quantum Gravit

    Improved methods for simulating nearly extremal binary black holes

    Get PDF
    Astrophysical black holes could be nearly extremal (that is, rotating nearly as fast as possible); therefore, nearly extremal black holes could be among the binaries that current and future gravitational-wave observatories will detect. Predicting the gravitational waves emitted by merging black holes requires numerical-relativity simulations, but these simulations are especially challenging when one or both holes have mass mm and spin SS exceeding the Bowen-York limit of S/m2=0.93S/m^2=0.93. We present improved methods that enable us to simulate merging, nearly extremal black holes more robustly and more efficiently. We use these methods to simulate an unequal-mass, precessing binary black hole coalescence, where the larger black hole has S/m2=0.99S/m^2=0.99. We also use these methods to simulate a non-precessing binary black hole coalescence, where both black holes have S/m2=0.994S/m^2=0.994, nearly reaching the Novikov-Thorne upper bound for holes spun up by thin accretion disks. We demonstrate numerical convergence and estimate the numerical errors of the waveforms; we compare numerical waveforms from our simulations with post-Newtonian and effective-one-body waveforms; we compare the evolution of the black-hole masses and spins with analytic predictions; and we explore the effect of increasing spin magnitude on the orbital dynamics (the so-called "orbital hangup" effect).Comment: 18 pages, 18 figure

    Bcl11b—A Critical Neurodevelopmental Transcription Factor—Roles in Health and Disease

    Get PDF
    B cell leukemia 11b (Bcl11b) is a zinc finger protein transcription factor with a multiplicity of functions. It works as both a genetic suppressor and activator, acting directly, attaching to promoter regions, as well as indirectly, attaching to promoter-bound transcription factors. Bcl11b is a fundamental transcription factor in fetal development, with important roles for the differentiation and development of various neuronal subtypes in the central nervous system (CNS). It has been used as a specific marker of layer V subcerebral projection neurons as well as striatal interneurons. Bcl11b also has critical developmental functions in the immune, integumentary and cardiac systems, to the extent that Bcl11b knockout mice are incompatible with extra-uterine life. Bcl11b has been implicated in a number of disease states including Huntington’s disease, Alzheimer’s disease, HIV and T-Cell malignancy, amongst others. Bcl11b is a fascinating protein whose critical roles in the CNS and other parts of the body are yet to be fully explicated. This review summarizes the current literature on Bcl11b and its functions in development, health, and disease as well as future directions for research

    The ‘Facebook\u27 Effect: College Students\u27 Perceptions of Online Discussions in the Age of Social Networking

    Get PDF
    Despite the growing prominence of Facebook in the lives of college students, few studies have investigated the potential of these innovative web-based communication tools for engaging students in academic discussions. This study used a pre-test, post-test design in two introductory-level courses at a large public university to compare students’ (n = 107) perceptions of, attitudes toward, and perceived learning associated with two different online discussion tools: the Facebook group forum and a university-sponsored online tool. Although pre-course surveys indicated that few students enjoyed online discussions, postcourse analysis revealed significant changes in students’ opinions regarding the value and functionality of web-based discussion forums, with Facebook as their clear preference. Students who participated in Facebook discussions enjoyed the site’s familiarity, navigability, and aesthetically appealing interface. Facebook users also reported that they were able to become better acquainted with classmates, felt like valued participants in the course, and learned more course material. This study suggests that, if used appropriately, Facebook may help to increase college student engagement in certain learning contexts by cultivating classroom community and stimulating intellectual discourse

    The SXS Collaboration catalog of binary black hole simulations

    Get PDF
    Accurate models of gravitational waves from merging black holes are necessary for detectors to observe as many events as possible while extracting the maximum science. Near the time of merger, the gravitational waves from merging black holes can be computed only using numerical relativity. In this paper, we present a major update of the Simulating eXtreme Spacetimes (SXS) Collaboration catalog of numerical simulations for merging black holes. The catalog contains 2018 distinct configurations (a factor of 11 increase compared to the 2013 SXS catalog), including 1426 spin-precessing configurations, with mass ratios between 1 and 10, and spin magnitudes up to 0.998. The median length of a waveform in the catalog is 39 cycles of the dominant ℓ=m=2\ell=m=2 gravitational-wave mode, with the shortest waveform containing 7.0 cycles and the longest 351.3 cycles. We discuss improvements such as correcting for moving centers of mass and extended coverage of the parameter space. We also present a thorough analysis of numerical errors, finding typical truncation errors corresponding to a waveform mismatch of ∼10−4\sim 10^{-4}. The simulations provide remnant masses and spins with uncertainties of 0.03% and 0.1% (90th90^{\text{th}} percentile), about an order of magnitude better than analytical models for remnant properties. The full catalog is publicly available at https://www.black-holes.org/waveforms .Comment: 33+18 pages, 13 figures, 4 tables, 2,018 binaries. Catalog metadata in ancillary JSON file. v2: Matches version accepted by CQG. Catalog available at https://www.black-holes.org/waveform

    Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO

    Get PDF
    This white paper describes the research and development needed over the next decade to realize "Cosmic Explorer," the U.S. node of a future third-generation detector network that will be capable of observing and characterizing compact gravitational-wave sources to cosmological redshifts

    Populating the Galaxy with pulsars I: stellar & binary evolution

    Full text link
    The computation of theoretical pulsar populations has been a major component of pulsar studies since the 1970s. However, the majority of pulsar population synthesis has only regarded isolated pulsar evolution. Those that have examined pulsar evolution within binary systems tend to either treat binary evolution poorly or evolve the pulsar population in an ad-hoc manner. Thus no complete and direct comparison with observations of the pulsar population within the Galactic disk has been possible to date. Described here is the first component of what will be a complete synthetic pulsar population survey code. This component is used to evolve both isolated and binary pulsars. Synthetic observational surveys can then be performed on this population for a variety of radio telescopes. The final tool used for completing this work will be a code comprised of three components: stellar/binary evolution, Galactic kinematics and survey selection effects. Results provided here support the need for further (apparent) pulsar magnetic field decay during accretion, while they conversely suggest the need for a re-evaluation of the assumed \textit{typical} MSP formation process. Results also focus on reproducing the observed PP˙P\dot{P} diagram for Galactic pulsars and how this precludes short timescales for standard pulsar exponential magnetic field decay. Finally, comparisons of bulk pulsar population characteristics are made to observations displaying the predictive power of this code, while we also show that under standard binary evolutionary assumption binary pulsars may accrete much mass.Comment: 26 pages, 16 figures, 1 table, accepted for publication in MNRA
    • …
    corecore