43 research outputs found

    Low-density lipoprotein concentration in the normal left coronary artery tree

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The blood flow and transportation of molecules in the cardiovascular system plays a crucial role in the genesis and progression of atherosclerosis. This computational study elucidates the Low Density Lipoprotein (LDL) site concentration in the entire normal human 3D tree of the LCA.</p> <p>Methods</p> <p>A 3D geometry model of the normal human LCA tree is constructed. Angiographic data used for geometry construction correspond to end-diastole. The resulted model includes the LMCA, LAD, LCxA and their main branches. The numerical simulation couples the flow equations with the transport equation applying realistic boundary conditions at the wall.</p> <p>Results</p> <p>High concentration of LDL values appears at bifurcation opposite to the flow dividers in the proximal regions of the Left Coronary Artery (LCA) tree, where atherosclerosis frequently occurs. The area-averaged normalized luminal surface LDL concentrations over the entire LCA tree are, 1.0348, 1.054 and 1.23, for the low, median and high water infiltration velocities, respectively. For the high, median and low molecular diffusivities, the peak values of the normalized LDL luminal surface concentration at the LMCA bifurcation reach 1.065, 1.080 and 1.205, respectively. LCA tree walls are exposed to a cholesterolemic environment although the applied mass and flow conditions refer to normal human geometry and normal mass-flow conditions.</p> <p>Conclusion</p> <p>The relationship between WSS and luminal surface concentration of LDL indicates that LDL is elevated at locations where WSS is low. Concave sides of the LCA tree exhibit higher concentration of LDL than the convex sides. Decreased molecular diffusivity increases the LDL concentration. Increased water infiltration velocity increases the LDL concentration. The regional area of high luminal surface concentration is increased with increasing water infiltration velocity. Regions of high LDL luminal surface concentration do not necessarily co-locate to the sites of lowest WSS. The degree of elevation in luminal surface LDL concentration is mostly affected from the water infiltration velocity at the vessel wall. The paths of the velocities in proximity to the endothelium might be the most important factor for the elevated LDL concentration.</p

    The Sympathetic Nervous System in Heart Failure Physiology, Pathophysiology, and Clinical Implications

    Get PDF
    Heart failure is a syndrome characterized initially by left ventricular dysfunction that triggers countermeasures aimed to restore cardiac output. These responses are compensatory at first but eventually become part of the disease process itself leading to further worsening cardiac function. Among these responses is the activation of the sympathetic nervous system (SNS) that provides inotropic support to the failing heart increasing stroke volume, and peripheral vasoconstriction to maintain mean arterial perfusion pressure, but eventually accelerates disease progression affecting survival. Activation of SNS has been attributed to withdrawal of normal restraining influences and enhancement of excitatory inputs including changes in: 1) peripheral baroreceptor and chemoreceptor reflexes; 2) chemical mediators that control sympathetic outflow; and 3) central integratory sites. The interface between the sympathetic fibers and the cardiovascular system is formed by the adrenergic receptors (ARs). Dysregulation of cardiac beta1-AR signaling and transduction are key features of heart failure progression. In contrast, cardiac beta2-ARs and alpha1-ARs may function in a compensatory fashion to maintain cardiac inotropy. Adrenergic receptor polymorphisms may have an impact on the adaptive mechanisms, susceptibilities, and pharmacological responses of SNS. The beta-AR blockers and the inhibitors of the renin-angiotensin-aldosterone axis form the mainstay of current medical management of chronic heart failure. Conversely, central sympatholytics have proved harmful, whereas sympathomimetic inotropes are still used in selected patients with hemodynamic instability. This review summarizes the changes in SNS in heart failure and examines how modulation of SNS activity may affect morbidity and mortality from this syndrome

    Conceptual modeling for the design of intelligent and emergent information systems

    Get PDF
    A key requirement to today's fast changing economic environment is the ability of organizations to adapt dynamically in an effective and efficient manner. Information and Communication Technologies play a crucially important role in addressing such adaptation requirements. The notion of `intelligent software' has emerged as a means by which enterprises can respond to changes in a reactive manner but also to explore, in a pro-active manner, possibilities for new business models. The development of such software systems demands analysis, design and implementation paradigms that recognize the need for ‘co-development’ of these systems with enterprise goals, processes and capabilities. The work presented in this paper is motivated by this need and to this end it proposes a paradigm that recognizes co-development as a knowledge-based activity. The proposed solution is based on a multi-perspective modeling approach that involves (i) modeling key aspects of the enterprise, (ii) reasoning about design choices and (iii) supporting strategic decision-making through simulations. The utility of the approach is demonstrated though a case study in the field of marketing for a start-up company

    Heart Failure in Patients with Preserved Ejection Fraction: Questions Concerning Clinical Progression

    No full text
    Over the last two decades, important advances have been made in explaining some pathophysiological aspects of heart failure with preserved ejection fraction (HFpEF) with repercussions for the successful clinical management of the syndrome. Despite these gains, our knowledge for the natural history of clinical progression from the pre-clinical diastolic dysfunction (PDD) until the final clinical stages is significantly limited. The subclinical progression of PDD to the clinical phenotype of HFpEF and the further clinical progression to some more complex clinical models with multi-organ involvement, similar to heart failure with reduced ejection fraction (HFrEF), continue to be poorly understood. Prospective studies are needed to elucidate the natural history of clinical progression in patients with HFpEF and to identify the exact left ventricular remodeling mechanism that underlies this progression

    Impact of Chaos in the Progression of Heart Failure

    No full text
    Abstract Purpose of review: Cardiologists and researchers are well informed of the advances in chaos theor

    Clinical Phenotypes of Cardiovascular and Heart Failure Diseases Can Be Reversed? The Holistic Principle of Systems Biology in Multifaceted Heart Diseases

    No full text
    Recent advances in cardiology and biological sciences have improved quality of life in patients with complex cardiovascular diseases (CVDs) or heart failure (HF). Regardless of medical progress, complex cardiac diseases continue to have a prolonged clinical course with high morbidity and mortality. Interventional coronary techniques together with drug therapy improve quality and future prospects of life, but do not reverse the course of the atherosclerotic process that remains relentlessly progressive. The probability of CVDs and HF phenotypes to reverse can be supported by the advances made on the medical holistic principle of systems biology (SB) and on artificial intelligence (AI). Studies on clinical phenotypes reversal should be based on the research performed in large populations of patients following gathering and analyzing large amounts of relative data that embrace the concept of complexity. To decipher the complexity conundrum, a multiomics approach is needed with network analysis of the biological data. Only by understanding the complexity of chronic heart diseases and explaining the interrelationship between different interconnected biological networks can the probability for clinical phenotypes reversal be increased

    Progressive nature of heart failure and systems biology

    No full text
    The progressive nature of heart failure (HF) is the predominant cause for the clinical course that the HF syndrome is taking. Systems biology methodology is of the utmost importance to explain and comprehend the built-in mechanisms of adverse clinical progression. Various heart diseases produce myocardial damage with subsequent left ventricular remodeling which is the principal underlying pathophysiological mechanism for the clinical progression of HF. The self-organized positive feedback stabilization mechanisms of left ventricular remodeling, adrenergic stimulation and activation of the renin-angiotensin-aldosterone system and natriuretic peptide systems, are hierarchical adaptive processes. These adaptive processes are responsible for further left ventricular remodeling with subsequent clinical deterioration and for the emergence of clinical phenotypes. These mechanisms are counteracted with angiotensin-converting enzyme inhibitors, angiotensin receptor blockers and β-blockers in an attempt to improve the adverse clinical phenomena of HF progression in a new but clinically worse stabilization level. In this review our intention is to underline the progressive nature of the HF syndrome and to demonstrate the significance of ventricular remodeling and the role of self-organized positive feedback adaptive processes

    Conceptual Foundations of Systems Biology Explaining Complex Cardiac Diseases

    No full text
    Systems biology is an important concept that connects molecular biology and genomics with computing science, mathematics and engineering. An endeavor is made in this paper to associate basic conceptual ideas of systems biology with clinical medicine. Complex cardiac diseases are clinical phenotypes generated by integration of genetic, molecular and environmental factors. Basic concepts of systems biology like network construction, modular thinking, biological constraints (downward biological direction) and emergence (upward biological direction) could be applied to clinical medicine. Especially, in the field of cardiology, these concepts can be used to explain complex clinical cardiac phenotypes like chronic heart failure and coronary artery disease. Cardiac diseases are biological complex entities which like other biological phenomena can be explained by a systems biology approach. The above powerful biological tools of systems biology can explain robustness growth and stability during disease process from modulation to phenotype. The purpose of the present review paper is to implement systems biology strategy and incorporate some conceptual issues raised by this approach into the clinical field of complex cardiac diseases. Cardiac disease process and progression can be addressed by the holistic realistic approach of systems biology in order to define in better terms earlier diagnosis and more effective therapy

    Heart Failure in Patients with Preserved Ejection Fraction: Questions Concerning Clinical Progression

    No full text
    Over the last two decades, important advances have been made in explaining some pathophysiological aspects of heart failure with preserved ejection fraction (HFpEF) with repercussions for the successful clinical management of the syndrome. Despite these gains, our knowledge for the natural history of clinical progression from the pre-clinical diastolic dysfunction (PDD) until the final clinical stages is significantly limited. The subclinical progression of PDD to the clinical phenotype of HFpEF and the further clinical progression to some more complex clinical models with multi-organ involvement, similar to heart failure with reduced ejection fraction (HFrEF), continue to be poorly understood. Prospective studies are needed to elucidate the natural history of clinical progression in patients with HFpEF and to identify the exact left ventricular remodeling mechanism that underlies this progression
    corecore