164 research outputs found
CTCF binds the proximal exonic region of hTERT and inhibits its transcription
The expression of the catalytic subunit (hTERT) represents the limiting factor for telomerase activity. Previously, we detected a transcriptional repressor effect of the proximal exonic region (first two exons) of the hTERT gene. To better understand the mechanism involved and to identify a potential repressor, we further characterized this region. The addition of the hTERT proximal exonic region downstream of the hTERT minimal promoter strongly reduced promoter transcriptional activity in all cells tested (tumor, normal and immortalized). This exonic region also significantly inhibited the transcriptional activity of the CMV and CDKN2A promoters, regardless of the cell type. Therefore, the repressor effect of hTERT exonic region is neither cell nor promoter-dependent. However, the distance between the promoter and the exonic region can modulate this repressor effect, suggesting that nucleosome positioning plays a role in transcriptional repression. We showed by electrophoretic mobility shift assay that CCCTC-binding factor (CTCF) binds to the proximal exonic region of hTERT. Chromatin immunoprecipitaion assays confirmed the binding of CTCF to this region. CTCF is bound to hTERT in cells in which hTERT is not expressed, but not in telomerase-positive ones. Moreover, the transcriptional downregulation of CTCF by RNA interference derepressed hTERT gene expression in normal telomerase-negative cells. Our results suggest that CTCF participates in key cellular mechanisms underlying immortality by regulating hTERT gene expression
CTCF mediates chromatin looping via N-terminal domain-dependent cohesin retention
The DNA-binding protein CCCTC-binding factor (CTCF) and the cohesin complex function together to shape chromatin architecture in mammalian cells, but the molecular details of this process remain unclear. Here, we demonstrate that a 79-aa region within the CTCF N terminus is essential for cohesin positioning at CTCF binding sites and chromatin loop formation. However, the N terminus of CTCF fused to artificial zinc fingers was not sufficient to redirect cohesin to non-CTCF binding sites, indicating a lack of an autonomously functioning domain in CTCF responsible for cohesin positioning. BORIS (CTCFL), a germline-specific paralog of CTCF, was unable to anchor cohesin to CTCF DNA binding sites. Furthermore, CTCF-BORIS chimeric constructs provided evidence that, besides the N terminus of CTCF, the first two CTCF zinc fingers, and likely the 3D geometry of CTCF-DNA complexes, are also involved in cohesin retention. Based on this knowledge, we were able to convert BORIS into CTCF with respect to cohesin positioning, thus providing additional molecular details of the ability of CTCF to retain cohesin. Taken together, our data provide insight into the process by which DNA-bound CTCF constrains cohesin movement to shape spatiotemporal genome organization
BORIS/CTCFL-mediated transcriptional regulation of the hTERT telomerase gene in testicular and ovarian tumor cells
Telomerase activity, not detectable in somatic cells but frequently activated during carcinogenesis, confers immortality to tumors. Mechanisms governing expression of the catalytic subunit hTERT, the limiting factor for telomerase activity, still remain unclear. We previously proposed a model in which the binding of the transcription factor CTCF to the two first exons of hTERT results in transcriptional inhibition in normal cells. This inhibition is abrogated, however, by methylation of CTCF binding sites in 85% of tumors. Here, we showed that hTERT was unmethylated in testicular and ovarian tumors and in derivative cell lines. We demonstrated that CTCF and its paralogue, BORIS/CTCFL, were both present in the nucleus of the same cancer cells and bound to the first exon of hTERT in vivo. Moreover, exogenous BORIS expression in normal BORIS-negative cells was sufficient to activate hTERT transcription with an increasing number of cell passages. Thus, expression of BORIS was sufficient to allow hTERT transcription in normal cells and to counteract the inhibitory effect of CTCF in testicular and ovarian tumor cells. These results define an important contribution of BORIS to immortalization during tumorigenesi
Dual role of DNA methylation inside and outside of CTCF-binding regions in the transcriptional regulation of the telomerase hTERT gene
Expression of hTERT is the major limiting factor for telomerase activity. We previously showed that methylation of the hTERT promoter is necessary for its transcription and that CTCF can repress hTERT transcription by binding to the first exon. In this study, we used electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) to show that CTCF does not bind the methylated first exon of hTERT. Treatment of telomerase-positive cells with 5-azadC led to a strong demethylation of hTERT 5′-regulatory region, reactivation of CTCF binding and downregulation of hTERT. Although complete hTERT promoter methylation was associated with full transcriptional repression, detailed mapping showed that, in telomerase-positive cells, not all the CpG sites were methylated, especially in the promoter region. Using a methylation cassette assay, selective demethylation of 110 bp within the core promoter significantly increased hTERT transcriptional activity. This study underlines the dual role of DNA methylation in hTERT transcriptional regulation. In our model, hTERT methylation prevents binding of the CTCF repressor, but partial hypomethylation of the core promoter is necessary for hTERT expression
PAX5 activates the transcription of the human telomerase reverse transcriptase gene in B cells.
Telomerase is an RNA-dependent DNA polymerase that synthesizes telomeric DNA. Its activity is not detectable in most somatic cells but it is reactivated during tumorigenesis. In most cancers, the combination of hTERT hypermethylation and hypomethylation of a short promoter region is permissive for low-level hTERT transcription. Activated and malignant lymphocytes express high telomerase activity, through a mechanism that seems methylation-independent. The aim of this study was to determine which mechanism is involved in the enhanced expression of hTERT in lymphoid cells. Our data confirm that in B cells, some T cell lymphomas and non-neoplastic lymph nodes, the hTERT promoter is unmethylated. Binding sites for the B cell-specific transcription factor PAX5 were identified downstream of the ATG translational start site through EMSA and ChIP experiments. ChIP assays indicated that the transcriptional activation of hTERT by PAX5 does not involve repression of CTCF binding. In a B cell lymphoma cell line, siRNA-induced knockdown of PAX5 expression repressed hTERT transcription. Moreover, ectopic expression of PAX5 in a telomerase-negative normal fibroblast cell line was found to be sufficient to activate hTERT expression. These data show that activation of hTERT in telomerase-positive B cells is due to a methylation-independent mechanism in which PAX5 plays an important role
BORIS/CTCFL-mediated transcriptional regulation of the hTERT telomerase gene in testicular and ovarian tumor cells
Telomerase activity, not detectable in somatic cells but frequently activated during carcinogenesis, confers immortality to tumors. Mechanisms governing expression of the catalytic subunit hTERT, the limiting factor for telomerase activity, still remain unclear. We previously proposed a model in which the binding of the transcription factor CTCF to the two first exons of hTERT results in transcriptional inhibition in normal cells. This inhibition is abrogated, however, by methylation of CTCF binding sites in 85% of tumors. Here, we showed that hTERT was unmethylated in testicular and ovarian tumors and in derivative cell lines. We demonstrated that CTCF and its paralogue, BORIS/CTCFL, were both present in the nucleus of the same cancer cells and bound to the first exon of hTERT in vivo. Moreover, exogenous BORIS expression in normal BORIS-negative cells was sufficient to activate hTERT transcription with an increasing number of cell passages. Thus, expression of BORIS was sufficient to allow hTERT transcription in normal cells and to counteract the inhibitory effect of CTCF in testicular and ovarian tumor cells. These results define an important contribution of BORIS to immortalization during tumorigenesis
Expression of the CTCF-paralogous cancer-testis gene, brother of the regulator of imprinted sites (BORIS), is regulated by three alternative promoters modulated by CpG methylation and by CTCF and p53 transcription factors
BORIS, like other members of the ‘cancer/testis antigen’ family, is normally expressed in testicular germ cells and repressed in somatic cells, but is aberrantly activated in cancers. To understand regulatory mechanisms governing human BORIS expression, we characterized its 5′-flanking region. Using 5′ RACE, we identified three promoters, designated A, B and C, corresponding to transcription start sites at −1447, −899 and −658 bp upstream of the first ATG. Alternative promoter usage generated at least five alternatively spliced BORIS mRNAs with different half-lives determined by varying 5′-UTRs. In normal testis, BORIS is transcribed from all three promoters, but 84% of the 30 cancer cell lines tested used only promoter(s) A and/or C while the others utilized primarily promoters B and C. The differences in promoter usage between normal and cancer cells suggested that they were subject to differential regulation. We found that DNA methylation and functional p53 contributes to the negative regulation of each promoter. Moreover, reduction of CTCF in normally BORIS-negative human fibroblasts resulted in derepression of BORIS promoters. These results provide a mechanistic basis for understanding cancer-related associations between haploinsufficiency of CTCF and BORIS derepression, and between the lack of functional p53 and aberrant activation of BORIS
Comparative analyses of CTCF and BORIS occupancies uncover two distinct classes of CTCF binding genomic regions.
BackgroundCTCF and BORIS (CTCFL), two paralogous mammalian proteins sharing nearly identical DNA binding domains, are thought to function in a mutually exclusive manner in DNA binding and transcriptional regulation.ResultsHere we show that these two proteins co-occupy a specific subset of regulatory elements consisting of clustered CTCF binding motifs (termed 2xCTSes). BORIS occupancy at 2xCTSes is largely invariant in BORIS-positive cancer cells, with the genomic pattern recapitulating the germline-specific BORIS binding to chromatin. In contrast to the single-motif CTCF target sites (1xCTSes), the 2xCTS elements are preferentially found at active promoters and enhancers, both in cancer and germ cells. 2xCTSes are also enriched in genomic regions that escape histone to protamine replacement in human and mouse sperm. Depletion of the BORIS gene leads to altered transcription of a large number of genes and the differentiation of K562 cells, while the ectopic expression of this CTCF paralog leads to specific changes in transcription in MCF7 cells.ConclusionsWe discover two functionally and structurally different classes of CTCF binding regions, 2xCTSes and 1xCTSes, revealed by their predisposition to bind BORIS. We propose that 2xCTSes play key roles in the transcriptional program of cancer and germ cells
BORIS expression in ovarian cancer precursor cells alters the CTCF cistrome and enhances invasiveness through GALNT14
High-grade serous carcinoma (HGSC) is the most aggressive and predominant form of epithelial ovarian cancer and the leading cause of gynecological cancer death. We have previously shown that CTCFL (also known as BORIS, Brother of the Regulator of Imprinted Sites) is expressed in most ovarian cancers, and is associated with global and promoter-specific DNA hypomethylation, advanced tumor stage, and poor prognosis. To explore its role in HGSC, we expressed BORIS in human fallopian tube secretory epithelial cells (FTSEC), the presumptive cells of origin for HGSC. BORIS-expressing cells exhibited increased motility and invasion, and BORIS expression was associated with alterations in several cancer-associated gene expression networks, including fatty acid metabolism, TNF signaling, cell migration, and ECM-receptor interactions. Importantly, GALNT14, a glycosyltransferase gene implicated in cancer cell migration and invasion, was highly induced by BORIS, and GALNT14 knockdown significantly abrogated BORIS-induced cell motility and invasion. In addition, in silico analyses provided evidence for BORIS and GALNT14 co-expression in several cancers. Finally, ChIP-seq demonstrated that expression of BORIS was associated with de novo and enhanced binding of CTCF at hundreds of loci, many of which correlated with activation of transcription at target genes, including GALNT14. Taken together, our data indicate that BORIS may promote cell motility and invasion in HGSC via upregulation of GALNT14, and suggests BORIS as a potential therapeutic target in this malignancy
The Structural Complexity of the Human BORIS Gene in Gametogenesis and Cancer
BORIS/CTCFL is a paralogue of CTCF, the major epigenetic regulator of vertebrate genomes. BORIS is normally expressed only in germ cells but is aberrantly activated in numerous cancers. While recent studies demonstrated that BORIS is a transcriptional activator of testis-specific genes, little is generally known about its biological and molecular functions.Here we show that BORIS is expressed as 23 isoforms in germline and cancer cells. The isoforms are comprised of alternative N- and C-termini combined with varying numbers of zinc fingers (ZF) in the DNA binding domain. The patterns of BORIS isoform expression are distinct in germ and cancer cells. Isoform expression is activated by downregulation of CTCF, upregulated by reduction in CpG methylation caused by inactivation of DNMT1 or DNMT3b, and repressed by activation of p53. Studies of ectopically expressed isoforms showed that all are translated and localized to the nucleus. Using the testis-specific cerebroside sulfotransferase (CST) promoter and the IGF2/H19 imprinting control region (ICR), it was shown that binding of BORIS isoforms to DNA targets in vitro is methylation-sensitive and depends on the number and specific composition of ZF. The ability to bind target DNA and the presence of a specific long amino terminus (N258) in different isoforms are necessary and sufficient to activate CST transcription. Comparative sequence analyses revealed an evolutionary burst in mammals with strong conservation of BORIS isoproteins among primates.The extensive repertoire of spliced BORIS variants in humans that confer distinct DNA binding and transcriptional activation properties, and their differential patterns of expression among germ cells and neoplastic cells suggest that the gene is involved in a range of functionally important aspects of both normal gametogenesis and cancer development. In addition, a burst in isoform diversification may be evolutionarily tied to unique aspects of primate speciation
- …