36 research outputs found

    Bases moléculaires de l'adaptation piézophile : études structurales et biochimiques d'enzymes clés du métabolisme provenant d'archées et de bactéries isolées dans les fonds marins

    Get PDF
    The recent discovery of marine biodiversity shows that a large part of the biosphere is a high-pressure environment. The existence of a specific pressure adaptation is still an open question. Recently, the first obligate piezophilic hyperthermophilic microorganism was isolated from hydrothermal vent. This finding suggests the existence of a specific enzyme adaptation with respect to high pressure.To deeper understanding protein adaptation with respect to high pressure, we examine the enzymatic properties of two family enzymes, malate deshydrogenases and glyoxylate hydroxypyruvate reductases arising from piezophilic and non-piezophilic organisms.Using an integrated approach combining enzymology, biophysics and X-ray crystallography, we reveal significantly different behaviors with respect to high pressure. Our analysis show that these differences involved the dynamic component of the enzyme. These results suggest that pressure could be a discriminating parameter susceptible to induce an adaptative response.This thesis work allows to set the foundations of a protein-properties comparative method with respect to high pressure to reveal piezophilic adaptation in other protein systems.L'exploration récente des fonds marins a révélé l'existence d'une vie microbienne abyssale bien plus diverse et abondante que l'état de nos connaissances sur les limites du vivant ne le laissait penser. Ainsi on estime que plus de 60 % de la biosphère subit des conditions de pression jugées a priori défavorable au fonctionnement de la machinerie cellulaire. Ces pressions peuvent atteindre 1000 bars dans les fosses sous-marines les plus profondes. La découverte récente de Pyrococcus yayanosii CH1, premier organisme hyperthermophile et piézophile strict, a relancé la question de l'adaptation aux fortes pressions.Au cours de cette thèse cette question de l'adaptation à la haute pression a été abordée à travers les protéines par l'étude de deux familles enzymatiques, les malate déshydrogénases et les glyoxylate hydroxypyruvate réductases, provenant d'organismes piézophiles et non piézophiles.Les études comparatives associant enzymologie, biophysique et cristallographie des protéines présentées dans cette thèse révèlent des différences de comportements significatives vis à vis de la pression, chez des protéines d'une même famille enzymatique. Nos analyses montrent que ces différences portent sur différents aspects de la dynamique fonctionnelle des protéines. Nous montrons donc ainsi que la pression peut "potentiellement" représenter un paramètre discriminant susceptible de faire l'objet d'une adaptation.Le travail réalisé a permis de poser les bases d'une méthode de comparaison exhaustive des propriétés des protéines vis à vis de la pression afin de détecter les traces d'une adaptation piézophile sur d'autres systèmes protéiques

    Bases moléculaires de l'adaptation piézophile : études structurales et biochimiques d'enzymes clés du métabolisme provenant d'archées et de bactéries isolées dans les fonds marins

    No full text
    The recent discovery of marine biodiversity shows that a large part of the biosphere is a high-pressure environment. The existence of a specific pressure adaptation is still an open question. Recently, the first obligate piezophilic hyperthermophilic microorganism was isolated from hydrothermal vent. This finding suggests the existence of a specific enzyme adaptation with respect to high pressure.To deeper understanding protein adaptation with respect to high pressure, we examine the enzymatic properties of two family enzymes, malate deshydrogenases and glyoxylate hydroxypyruvate reductases arising from piezophilic and non-piezophilic organisms.Using an integrated approach combining enzymology, biophysics and X-ray crystallography, we reveal significantly different behaviors with respect to high pressure. Our analysis show that these differences involved the dynamic component of the enzyme. These results suggest that pressure could be a discriminating parameter susceptible to induce an adaptative response.This thesis work allows to set the foundations of a protein-properties comparative method with respect to high pressure to reveal piezophilic adaptation in other protein systems.L'exploration récente des fonds marins a révélé l'existence d'une vie microbienne abyssale bien plus diverse et abondante que l'état de nos connaissances sur les limites du vivant ne le laissait penser. Ainsi on estime que plus de 60 % de la biosphère subit des conditions de pression jugées a priori défavorable au fonctionnement de la machinerie cellulaire. Ces pressions peuvent atteindre 1000 bars dans les fosses sous-marines les plus profondes. La découverte récente de Pyrococcus yayanosii CH1, premier organisme hyperthermophile et piézophile strict, a relancé la question de l'adaptation aux fortes pressions.Au cours de cette thèse cette question de l'adaptation à la haute pression a été abordée à travers les protéines par l'étude de deux familles enzymatiques, les malate déshydrogénases et les glyoxylate hydroxypyruvate réductases, provenant d'organismes piézophiles et non piézophiles.Les études comparatives associant enzymologie, biophysique et cristallographie des protéines présentées dans cette thèse révèlent des différences de comportements significatives vis à vis de la pression, chez des protéines d'une même famille enzymatique. Nos analyses montrent que ces différences portent sur différents aspects de la dynamique fonctionnelle des protéines. Nous montrons donc ainsi que la pression peut "potentiellement" représenter un paramètre discriminant susceptible de faire l'objet d'une adaptation.Le travail réalisé a permis de poser les bases d'une méthode de comparaison exhaustive des propriétés des protéines vis à vis de la pression afin de détecter les traces d'une adaptation piézophile sur d'autres systèmes protéiques

    Molecular basis of piezophilic adaptation : structural and biochemistry studies of metabolic enzymes from deep sea Archea and Bacteria

    No full text
    L'exploration récente des fonds marins a révélé l'existence d'une vie microbienne abyssale bien plus diverse et abondante que l'état de nos connaissances sur les limites du vivant ne le laissait penser. Ainsi on estime que plus de 60 % de la biosphère subit des conditions de pression jugées a priori défavorable au fonctionnement de la machinerie cellulaire. Ces pressions peuvent atteindre 1000 bars dans les fosses sous-marines les plus profondes. La découverte récente de Pyrococcus yayanosii CH1, premier organisme hyperthermophile et piézophile strict, a relancé la question de l'adaptation aux fortes pressions.Au cours de cette thèse cette question de l'adaptation à la haute pression a été abordée à travers les protéines par l'étude de deux familles enzymatiques, les malate déshydrogénases et les glyoxylate hydroxypyruvate réductases, provenant d'organismes piézophiles et non piézophiles.Les études comparatives associant enzymologie, biophysique et cristallographie des protéines présentées dans cette thèse révèlent des différences de comportements significatives vis à vis de la pression, chez des protéines d'une même famille enzymatique. Nos analyses montrent que ces différences portent sur différents aspects de la dynamique fonctionnelle des protéines. Nous montrons donc ainsi que la pression peut "potentiellement" représenter un paramètre discriminant susceptible de faire l'objet d'une adaptation.Le travail réalisé a permis de poser les bases d'une méthode de comparaison exhaustive des propriétés des protéines vis à vis de la pression afin de détecter les traces d'une adaptation piézophile sur d'autres systèmes protéiques.The recent discovery of marine biodiversity shows that a large part of the biosphere is a high-pressure environment. The existence of a specific pressure adaptation is still an open question. Recently, the first obligate piezophilic hyperthermophilic microorganism was isolated from hydrothermal vent. This finding suggests the existence of a specific enzyme adaptation with respect to high pressure.To deeper understanding protein adaptation with respect to high pressure, we examine the enzymatic properties of two family enzymes, malate deshydrogenases and glyoxylate hydroxypyruvate reductases arising from piezophilic and non-piezophilic organisms.Using an integrated approach combining enzymology, biophysics and X-ray crystallography, we reveal significantly different behaviors with respect to high pressure. Our analysis show that these differences involved the dynamic component of the enzyme. These results suggest that pressure could be a discriminating parameter susceptible to induce an adaptative response.This thesis work allows to set the foundations of a protein-properties comparative method with respect to high pressure to reveal piezophilic adaptation in other protein systems

    New insights into the mechanism of substrates trafficking in Glyoxylate/Hydroxypyruvate reductases

    No full text
    International audienceGlyoxylate accumulation within cells is highly toxic. In humans, it is associated with hyperoxaluria type 2 (PH2) leading to renal failure. The glyoxylate content within cells is regulated by the NADPH/NADH dependent glyoxylate/hydroxypyruvate reductases (GRHPR). These are highly conserved enzymes with a dual activity as they are able to reduce glyoxylate to glycolate and to convert hydroxypyruvate into D-glycerate. Despite the determination of high-resolution X-ray structures, the substrate recognition mode of this class of enzymes remains unclear. We determined the structure at 2.0 Å resolution of a thermostable GRHPR from Archaea as a ternary complex in the presence of D-glycerate and NADPH. This shows a binding mode conserved between human and archeal enzymes. We also determined the first structure of GRHPR in presence of glyoxylate at 1.40 Å resolution. This revealed the pivotal role of Leu53 and Trp138 in substrate trafficking. These residues act as gatekeepers at the entrance of a tunnel connecting the active site to protein surface. Taken together, these results allowed us to propose a general model for GRHPR mode of action

    Using active comparators in self‐controlled studies

    Get PDF
    Background: When self‐controlled designs are used to study the triggering of medication‐related adverse effects, time‐varying confounding by indication can occur if the indication or its severity varies over time.Objectives: We aimed to describe how self‐controlled designs might mitigate or eliminate such confounding by indication by incorporating active comparators with similar indications, illustrated by an empirical exampleMethods: Practical approaches to incorporating active comparators will be described for case‐crossover, case‐time‐control, self‐controlled case‐series and symmetry analyses.In the empirical example, we used nation‐wide data from Denmark to study the association between narrow‐spectrum penicillin and venous thromboembolism (VTE), using a case‐crossover design. Macrolide antibiotics were selected as active comparator. This example was chosen because upper respiratory infection ‐ the main indication for narrow‐spectrum penicillin and macrolides ‐ is a transient risk factor for venous thromboembolism, i.e., representing time‐dependent confounding by indication.We identified Danish VTE patients, born 1950 or earlier, during the period 1995–2012. If patients had more than one VTE, we included only the first. The focal window was the 14‐d period before VTE diagnosis. We compared the odds of exposure in that window with one reference window 29–42 days before the VTE. We counted a window as exposed if one of the two antibiotics (penicillin or macrolide) was dispensed within it. We used a Wald‐based method and an interaction term in a conditional logistic regression model to estimate the exposure odds ratio (OR) with 95% confidence limits (CI) for the narrow‐spectrum penicillin users, having the macrolide users as active comparators, i.e. adjusted for transient confounding by indication.Results: We identified 57486 patients, of whom 4898 (8.5%) were dispensed penicillin during the focal window, and 2226 (3.9%) during the reference window. Corresponding figures were 1192 (2.1% and 572 (1.0%) for macrolide antibiotics. The case‐crossover estimate for penicillin was 2.45 (CI: 2.32–2.59) and 2.22 (CI: 2.00–2.47) for macrolide antibiotics. The Wald‐based estimate for penicillin with macrolide antibiotics as active comparator was 1.10 (CI: 0.98–1.24), and the interaction‐term based estimate was 1.22 (CI: 1.07–1.39).Conclusions: The strong association of penicillin and macrolides with VTE suggests both are due mostly to time‐varying confounding by indication. Such confounding can be mitigated by applying an active comparator drug that has an similar indication
    corecore