154 research outputs found

    Geregtelike geneeskunde : die multidissiplinêre benadering

    Get PDF
    Ek vra u vergunning om by hierdie geleentheid enkele woorde van dank en waardering uit te spreek. Eerstens my dank aan die Universiteit van Pretoria vir die vertroue in my gestel deur my in hierdie verantwoordelike pos aan te stel. Ek wil graag onderneem om steeds my bes te doen om op 'n verantwoordelike en bevredigende wyse aan die hoe eise en verwagtinge wat ek weet wat gestel mag word, te voldoen.Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 202

    Genetic testing approaches for hereditary breast cancer: Perspectives from a private diagnostic laboratory

    Get PDF
    Breast cancer is highly prevalent in South Africa, and up to 10% of breast cancer cases may be hereditary. The landscape of genetic testing options for hereditary breast cancer (HBC) has changed significantly over the past decade, and healthcare providers are faced with multiple options when referring breast cancer patients for genetic testing. We have performed a retrospective study of 3 years’ worth of breast cancer genetic testing referrals to our laboratory. While Afrikaner and Ashkenazi Jewish founder screens may be appropriate as first-line tests in a limited subset of patients, we have shown that in the majority of cases it is more effective to adopt a multigene panel approach. While variants in the BRCA1 and BRCA2 genes still account for a significant proportion of cases, close to 40% of pathogenic variants were found in genes other than BRCA1 or BRCA2. There are many factors that healthcare providers should consider when requesting genetic testing for breast cancer patients and families, including family history, ancestral background, cost, medical aid scheme reimbursement and scope of testing. We summarise our findings and provide advantages and disadvantages of each approach, with the aim of assisting clinicians and genetic counsellors to make appropriate testing decisions

    Properties of nitrogen-vacancy centers in diamond: group theoretic approach

    Get PDF
    We present a procedure that makes use of group theory to analyze and predict the main properties of the negatively charged nitrogen-vacancy (NV) center in diamond. We focus on the relatively low temperatures limit where both the spin-spin and spin-orbit effects are important to consider. We demonstrate that group theory may be used to clarify several aspects of the NV structure, such as ordering of the singlets in the (e2e^2) electronic configuration, the spin-spin and the spin-orbit interactions in the (aeae) electronic configuration. We also discuss how the optical selection rules and the response of the center to electric field can be used for spin-photon entanglement schemes. Our general formalism is applicable to a broad class of local defects in solids. The present results have important implications for applications in quantum information science and nanomagnetometry.Comment: 30 pages, 6 figure

    The negatively charged nitrogen-vacancy centre in diamond: the electronic solution

    Get PDF
    The negatively charged nitrogen-vacancy centre is a unique defect in diamond that possesses properties highly suited to many applications, including quantum information processing, quantum metrology, and biolabelling. Although the unique properties of the centre have been extensively documented and utilised, a detailed understanding of the physics of the centre has not yet been achieved. Indeed there persists a number of points of contention regarding the electronic structure of the centre, such as the ordering of the dark intermediate singlet states. Without a sound model of the centre's electronic structure, the understanding of the system's unique dynamical properties can not effectively progress. In this work, the molecular model of the defect centre is fully developed to provide a self consistent model of the complete electronic structure of the centre. The application of the model to describe the effects of electric, magnetic and strain interactions, as well as the variation of the centre's fine structure with temperature, provides an invaluable tool to those studying the centre and a means to design future empirical and ab initio studies of this important defect.Comment: 24 pages, 6 figures, 10 table

    Continuous-wave room-temperature diamond maser

    Get PDF
    The maser, older sibling of the laser, has been confined to relative obscurity due to its reliance on cryogenic refrigeration and high-vacuum systems. Despite this it has found application in deep-space communications and radio astronomy due to its unparalleled performance as a low-noise amplifier and oscillator. The recent demonstration of a room-temperature solid- state maser exploiting photo-excited triplet states in organic pentacene molecules paves the way for a new class of maser that could find applications in medicine, security and sensing, taking advantage of its sensitivity and low noise. However, to date, only pulsed operation has been observed in this system. Furthermore, organic maser molecules have poor thermal and mechanical properties, and their triplet sub-level decay rates make continuous emission challenging: alternative materials are therefore required. Therefore, inorganic materials containing spin-defects such as diamond and silicon carbide have been proposed. Here we report a continuous-wave (CW) room-temperature maser oscillator using optically pumped charged nitrogen-vacancy (NV) defect centres in diamond. This demonstration unlocks the potential of room-temperature solid-state masers for use in a new generation of microwave devices.Comment: 7 pages, 4 figure

    Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond

    Full text link
    The nitrogen-vacancy (N-V) center in diamond is a promising atomic-scale system for solid-state quantum information processing. Its spin-dependent photoluminescence has enabled sensitive measurements on single N-V centers, such as: electron spin resonance, Rabi oscillations, single-shot spin readout and two-qubit operations with a nearby 13C nuclear spin. Furthermore, room temperature spin coherence times as long as 58 microseconds have been reported for N-V center ensembles. Here, we have developed an angle-resolved magneto-photoluminescence microscopy apparatus to investigate the anisotropic electron spin interactions of single N-V centers at room temperature. We observe negative peaks in the photoluminescence as a function of both magnetic field magnitude and angle that are explained by coherent spin precession and anisotropic relaxation at spin level anti-crossings. In addition, precise field alignment unmasks the resonant coupling to neighboring dark nitrogen spins that are not otherwise detected by photoluminescence. The latter results demonstrate a means of investigating small numbers of dark spins via a single bright spin under ambient conditions.Comment: 13 pages, 4 figure

    The MeerKAT Fornax Survey -- II. The rapid removal of HI from dwarf galaxies in the Fornax cluster

    Get PDF
    We present MeerKAT Fornax Survey atomic hydrogen (HI) observations of the dwarf galaxies located in the central ~2.5 x 4 deg2^2 of the Fornax galaxy cluster. The HI images presented in this work have a 3σ3\sigma column density sensitivity between 2.7 and 50 x 1018^{18} cm−2^{-2} over 25 km s−1^{-1} for spatial resolution between 4 and 1 kpc. We are able to detect an impressive MHI = 5 x 105^{5} Msun 3σ\sigma point source with a line width of 50 km s−1^{-1} at a distance of 20 Mpc. We detect HI in 17 out of the 304 dwarfs in our field -- 14 out of the 36 late type dwarfs (LTDs), and 3 of the 268 early type dwarfs (ETDs). The HI-detected LTDs have likely just joined the cluster and are on their first infall as they are located at large clustocentric radii, with comparable MHI and mean stellar surface brightness at fixed luminosity as blue, star-forming LTDs in the field. The HI-detected ETDs have likely been in the cluster longer than the LTDs and acquired their HI through a recent merger or accretion from nearby HI. Eight of the HI-detected LTDs host irregular or asymmetric HI emission and disturbed or lopsided stellar emission. There are two clear cases of ram-pressure shaping the HI, with the LTDs displaying compressed HI on the side closest to the cluster centre and a one-sided, starless tail pointing away from the cluster centre. The HI-detected dwarfs avoid the most massive potentials, consistent with massive galaxies playing an active role in the removal of HI. We create a simple toy model to quantify the timescale of HI stripping in the cluster. We find that a MHI = 108^{8} Msun dwarf will be stripped in ~ 240 Myr. The model is consistent with our observations, where low mass LTDs are directly stripped of their HI from a single encounter and more massive LTDs can harbour a disturbed HI morphology due to longer times or multiple encounters being required to fully strip their HI.Comment: Accepted in Astronomy & Astrophysics. 21 pages, 10 figures. Data available at the MeerKAT Fornax Survey website https://sites.google.com/inaf.it/meerkatfornaxsurve

    The Shapes of BCGs and normal Ellipticals in Nearby Clusters

    Get PDF
    We compare the apparent axial ratio distributions of Brightest Cluster Galaxies (BCGs) and normal ellipticals (Es) in our sample of 75 galaxy clusters from the WINGS survey. Most BCGs in our clusters (69%) are classified as cD galaxies. The sample of cDs has been completed by 14 additional cDs (non-BCGs) we found in our clusters. We find that: (i) Es have triaxial shape, the triaxiality sharing almost evenly the intrinsic axial ratios parameter space, with a weak preference for prolateness; (ii) the BCGs have triaxial shape as well. However, their tendence towards prolateness is much stronger than in the case of Es. Such a strong prolateness appears entirely due to the sizeable (dominant) component of cDs inside the WINGS sample of BCGs. In fact, while the 'normal'(non-cD) BCGs do not differ from Es, as far as the shape distribution is concerned, the axial ratio distribution of BCG_cD galaxies is found to support quite prolate shapes; (iii) our result turns out to be strongly at variance with the only similar, previous analysis by Ryden et al.(1993)(RLP93), where BCGs and Es were found to share the same axial ratio distribution; (iv) our data suggest that the above discrepancy is mainly caused by the different criteria that RLP93 and ourselves use to select the cluster samples, coupled with a preference of cDs to reside in powerful X-ray emitting clusters; (v) the GIF2 N-body results suggest that the prolateness of the BCGs (in particular the cDs) could reflect the shape of the associated dark matter halos.Comment: 18 pages, 9 figures, 2 tables. Accepted for publication in MNRA

    an overview of the MHONGOOSE survey: Observing nearby galaxies with MeerKAT

    Get PDF
    © Copyright owned by the author(s). MHONGOOSE is a deep survey of the neutral hydrogen distribution in a representative sample of 30 nearby disk and dwarf galaxies with H I masses from ∼ 106 to ∼ 1011 M, and luminosities from MR ∼ 12 to MR ∼ −22. The sample is selected to uniformly cover the available range in log(MHI). Our extremely deep observations, down to H I column density limits of well below 1018 cm−2 — or a few hundred times fainter than the typical H I disks in galaxies — will directly detect the effects of cold accretion from the intergalactic medium and the links with the cosmic web. These observations will be the first ever to probe the very low-column density neutral gas in galaxies at these high resolutions. Combination with data at other wavelengths, most of it already available, will enable accurate modeling of the properties and evolution of the mass components in these galaxies and link these with the effects of environment, dark matter distribution, and other fundamental properties such as halo mass and angular momentum. MHONGOOSE can already start addressing some of the SKA-1 science goals and will provide a comprehensive inventory of the processes driving the transformation and evolution of galaxies in the nearby universe at high resolution and over 5 orders of magnitude in column density. It will be a Nearby Galaxies Legacy Survey that will be unsurpassed until the advent of the SKA, and can serve as a highly visible, lasting statement of MeerKAT’s capabilities
    • …
    corecore