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Abstract. The negatively charged nitrogen-vacancy centre is a unique defect in
diamond that possesses properties highly suited to many applications, including
quantum information processing, quantum metrology and biolabelling. Although
the unique properties of the centre have been extensively documented and
utilized, a detailed understanding of the physics of the centre has not yet been
achieved. Indeed, there persist a number of points of contention regarding the
electronic structure of the centre, such as the ordering of the dark intermediate
singlet states. Without a detailed model of the centre’s electronic structure, the
understanding of the system’s unique dynamical properties cannot effectively
progress. In this work, the molecular model of the defect centre is fully developed
to provide a self-consistent model of the complete electronic structure of the
centre. The application of the model to describe the effects of electric, magnetic
and strain interactions, as well as the variation of the centre’s fine structure with
temperature, provides an invaluable tool to those studying the centre and a means
of designing future empirical and ab initio studies of this important defect.
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1. Introduction

The negatively charged nitrogen-vacancy (NV−) centre in diamond is a promising system
for many quantum information processing [1], quantum metrology and biolabelling
applications [2]. These applications include secure quantum key distribution [3], quantum
computing [4], Q-switching in solid state photonic cavities [5], magnetometry [6], electric
field sensing [7] and decoherence-based imaging [8]. There is significant interest in the centre
primarily due to its well-documented capabilities of single-photon generation [9], long-lived
coherence [10], spin coupling [11] and optical spin polarization and readout [12]. The observed
properties of the centre include a strong optical zero phonon line (ZPL) at 1.945 eV [13],
an infrared ZPL at 1.190 eV [14], a paramagnetic ground state triplet [15] and a strain [16],
Zeeman [17] and Stark [18] affected excited state triplet. Recent experimental studies have also
provided new information regarding the centre’s excited state fine structure, its temperature
dependence [19] and the presence of dynamic Jahn–Teller effects [20].

The NV− centre is a point defect of C3v symmetry in diamond consisting of a substitutional
nitrogen atom adjacent to a carbon vacancy (refer to figure 1). The observable properties of the
centre are consistent with a six-electron model [21], where the electrons are postulated to consist
of the five unpaired electrons of the nearest-neighbour nitrogen and carbon atoms to the vacancy
and an additional electron trapped at the centre. The even number of electrons yields an integer
spin system, and the use of spin resonance techniques [22] has confirmed that the electronic
states are highly localized to the vacancy and its nearest neighbours and that the ground state is
an 3A2 triplet [15]. The high degree of localization supports the application of a molecular model
of the electronic system of the centre, in which the centre’s electronic states are described by
configurations of molecular orbitals (MOs) initially constructed from linear combinations of the
dangling sp3 orbitals of the nearest-neighbour carbon and nitrogen atoms using group theoretical
arguments.

Previous applications of the molecular model [21, 23, 24] have successfully described the
zero field splitting of the ground triplet state due to spin–spin interaction, the 3E excited triplet
state and its fine structure induced by both spin–orbit and spin–spin interactions, and many
aspects of the interactions of the triplet states with electric, magnetic and strain perturbations.
However, being a semi-empirical model, unless the molecular model is fully developed in order
to reduce the model’s parameters to the minimal set, the model has limited ability to make
definitive predictions on aspects of the electronic structure that cannot be directly observed and
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Figure 1. Schematics of the nitrogen-vacancy centre and lattice depicting
the vacancy (transparent), the nearest-neighbour carbon atoms to the vacancy
(black), the substitutional nitrogen atom (brown) and the next-to-nearest carbon
neighbours to the vacancy (white). The adopted coordinate system and carbon
labels are depicted in the right schematic.

the design of a systematic method to measure the large set of parameters becomes ambiguous.
As a result of the previous partially developed molecular models, there have been a number
of continual points of contention regarding the electronic structure of the centre. In particular,
there is currently contention surrounding the energetic ordering and positioning of the dark 1E
and 1A1 (and possibly 1E′) singlet states that are thought to exist between the ground and excited
triplet states.

The locations of the intermediate singlet states are critical to developing an understanding
of the process of optical spin polarization [12], which is the principal property of the NV−

centre that underpins the majority of its important applications. In the process of optical spin
polarization, the population that has been optically excited from the ground to the excited triplet
state is believed to decay non-radiatively from the excited triplet via the intermediate singlets
to the ground triplet state in such a way that the ms = ±1 sub-levels of the excited triplet state
are preferentially depopulated and the ms = 0 sub-level of the ground triplet is preferentially
populated. Consequently, after a short period of optical excitation the centre becomes spin
polarized into ms = 0 population. This paper does not aim to describe the spin polarization
mechanism, but instead provide the detailed model of the coupling of the intermediate singlet
states and the triplet states due to spin–orbit interactions, which will form the foundation for
future studies of the spin polarization mechanism.

There are a number of other properties of the NV− centre that require a fully developed
model in order to be satisfactorily explained. These include the Stark effect in the ground
state triplet [7, 25], the small anisotropy of the effective electronic g-factor of the ground
state triplet [26], the strain splitting of the infrared transition between the intermediate singlet
states [14] and the presence of the Jahn–Teller effect in the 1E and 3E [20]. Each of these
properties requires detailed treatment of electronic Coulomb repulsion, spin–orbit and spin–spin
interactions that act to couple the electronic states of the centre and allow these properties to
exist. The coupling of electronic states implies that the calculation of the effects of electric,
magnetic and strain perturbations must be performed in the complete basis of the centre’s
electronic states.

In this paper, the molecular model of the NV− centre will be fully developed to provide
an electronic solution that is experimentally testable and offers explanations for many of the
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remaining questions regarding the centre. The model will be based upon previous applications
of the molecular model and utilize invaluable ab initio and empirical results to draw conclusions
and identify parameters that are known. The electronic Coulomb, spin–orbit and spin–spin
interactions will be treated to determine the energies and couplings of the electronic states.
Spin–orbit and spin–spin interactions will be treated using perturbation theory in order to
produce simple energy and coupling coefficient expressions in terms of the minimal set of
model parameters. The parameters are provided as one- and two-electron matrix elements
of the electronic interactions, allowing unambiguous evaluation by future ab initio studies.
Electric, magnetic and strain interactions are also treated in order to allow future experiments
to be designed for measuring the remaining unknown parameters. The treatment of the
interactions will also provide the foundation to develop an understanding of spin polarization,
the Jahn–Teller effect and the temperature dependence of the centre’s properties.

2. The orbital structure

Adopting an adiabatic approximation and considering the nuclei of the crystal to be fixed at
their equilibrium coordinates ER0 corresponding to the ground electronic state, the electronic
Hamiltonian of the NV− centre can be defined as

Ĥ NV =

∑
i

T̂ i + V̂Ne(Er i , ER0) + V̂ so(xi , ER0) +
∑
i> j

V̂ ee(xi , x j) + V̂ ss(xi , x j), (1)

where xi = (Er i , Esi) denotes the collective spatial and spin coordinates of the i th electron of the
centre, T̂ i is the kinetic energy of the i th electron, V̂Ne is the effective Coulomb potential of
the interaction of the nuclei and lattice electrons with the electrons of the centre, V̂ so is the
electronic spin–orbit potential, V̂ ee is the Coulomb repulsion potential of the electrons of the
centre and V̂ ss is the electronic spin–spin potential. Note that nuclear hyperfine interactions
have been ignored. As for most molecular and solid state systems, the first step in solving Ĥ NV

is to obtain the solutions of the one-electron Coulomb problem,

ĥ = T̂ + V̂Ne(Er , ER0), (2)

which will be the MOs of the centre. Using the MOs, a basis of many-electron configuration
states that are solutions of

∑
i ĥi can be defined and the remaining one- and two-electron

components of Ĥ NV can be treated in this basis.
At this stage, the C3V symmetry of the ground nuclear equilibrium coordinates can be

employed to construct the MOs of the defect. Using the basis {n, c1, c2, c3} (refer to figure 1
for labels) of tetrahedrally coordinated sp3 atomic orbitals of the nearest-neighbour carbon
and nitrogen atoms to the vacancy, the MOs can be constructed as linear combinations of the
atomic orbitals (LCAOs) with definite orbital symmetry. This procedure has been conducted by
a number of authors and an example of the resulting set of MOs [29] is

a1(N ) = n, a1(C) =
1

√
3
√

1 + 2Scc − 3S2
nc

(c1 + c2 + c3 − 3Sncn),

ex =
1

√
3
√

2 − 2Scc

(2c1 − c2 − c3), ey =
1

√
2 − 2Scc

(c2 − c3),

(3)

where Snc = 〈n|c1〉 and Scc = 〈c1|c2〉 are orbital overlap integrals.
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Figure 2. Schematics of the three NV centre MOs responsible for the centre’s
observable properties in the vicinity of the vacancy and their energy ordering.
Red and blue components represent positive and negative contributions to the
MOs, respectively, and the atom colours are the same as in figure 1.

Clearly, the LCAO method is a highly approximate method of constructing the MOs as it
uses a restricted basis set and does not consider the interactions between the MOs of the defect
centre and the electron orbitals of the remainder of the crystal. Therefore, the key objective of the
LCAO method is not to produce an accurate description of the MOs, but to produce the correct
number of MOs of a particular symmetry type and to estimate their energy ordering. The results
of ab initio studies [27, 30, 31] can be used to confirm the number of MOs of each symmetry
type and their energy ordering. The majority of ab initio studies agree that there exist three MOs
{a1, ex , ey} within the bandgap of diamond and that these resemble the highly localized MOs
of (3), with additional contributions from atomic orbitals at the next-to-nearest neighbours and
beyond. Furthermore, the studies show that the a1(N ) and a1(C) MOs have mixed to form a1

and a′

1 such that a′

1 has been forced downwards in energy into the diamond valence band and a1

has significant contributions from both the nitrogen and carbon atomic orbitals.
Using the six-electron model of the NV− centre, the a′

1 MO will be completely filled by two
electrons in the ground a′2

1 a2
1e2 and first excited a′2

1 a1
1e3 MO configurations. There are several

second excited MO configurations: a′2
1 e4, a′

1a2
1e3 and a′

1a1e4. Due to the estimated proximity of
the a1 MO to the valence band [29, 31], the first two second excited MO configurations a′2

1 e4

and a′

1a2
1e3 could be close in energy. The states of these second excited MO configurations could

mix with the states of the ground and first excited states and affect their energies, but are not
expected to play a significant role in the centre’s properties themselves. Consequently, only the
three MOs within the bandgap are expected to contribute to the observable properties of the
centre and only the ground and first excited MO configurations will be treated in detail in this
work. Schematics of the three MOs in the region of the vacancy and their energy ordering are
depicted in figure 2.

The configuration states of the ground and first excited MO configurations of the centre
are constructed by first defining linear combinations of products of four MOs that transform
as a particular row of an irreducible representation of the C3v group. Using the irreducible
representations and Clebsch–Gordan coefficients defined in [23], examples of the symmetrized
linear combinations of products of two MOs are

φA1(a1a1) = a1a1, φE,x(a1e) = a1ex , φE,y(a1e) = a1ey,

φA1(ee) =
1

√
2
(exex + eyey), φA2(ee) =

1
√

2
(exey − eyex),

φE,x(ee) =
1

√
2
(exex − eyey), φE,y(ee) =

−1
√

2
(exey + eyex).

(4)
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Table 1. The configuration and spin–orbit states of the NV− centre expressed in
terms of Slater determinants of the MOs. Second quantization notation has been
adopted to denote the occupation of the MOs in each Slater determinant in the
order |a1ā1ex ēxey ēy〉, where an overbar denotes spin-down.

8c
j,k;S,ms

8so
n, j,k

a2
1e2 3A2 8c

A2;1,0 =
1

√
2
(|111001〉 + |110110〉) 8so

1,A1
= 8c

A2;1,0

8c
A2;1,1 = |111010〉 8so

2,E,x =
−1
√

2
(−8c

A2;1,1 + 8c
A2;1,−1)

8c
A2;1,−1 = |110101〉 8so

2,E,y =
−i
√

2
(8c

A2;1,1 + 8c
A2;1,−1)

1E 8c
E,x;0,0 =

1
√

2
(|111100〉 − |110011〉) 8so

3,E,x = 8c
E,x;0,0

8c
E,y;0,0 =

1
√

2
(|110110〉 − |111001〉) 8so

3,E,y = 8c
E,y;0,0

1A1 8c
A1;0,0 =

1
√

2
(|111100〉 + |110011〉) 8so

4,A1
= 8c

A1;0,0

a1e3 3E 8c
E,x;1,0 =

1
√

2
(|100111〉 + |011011〉) 8so

5,E,x =
1
2 [−i(8c

E,x;1,1 + 8c
E,x;1,−1)

−(−8c
E,y;1,1 + 8c

E,y;1,−1)]
8c

E,y;1,0 =
1

√
2
(|101101〉 + |011110〉) 8so

5,E,y =
1
2 [−(−8c

E,x;1,1 + 8c
E,x;1,−1)

+i(8c
E,y;1,1 + 8c

E,y;1,−1)]
8c

E,x;1,1 = |101011〉 8so
6,E,x = −8c

E,y;1,0

8c
E,y;1,1 = |101110〉 8so

6,E,y = 8c
E,x;1,0

8c
E,x;1,−1 = |010111〉 8so

7,A2
=

1
2 [(−8c

E,x;1,1 + 8c
E,x;1,−1)

+i(8c
E,y;1,1 + 8c

E,y;1,−1)]
8c

E,y;1,−1 = |011101〉 8so
8,A1

=
1
2 [−i(8c

E,x;1,1 + 8c
E,x;1,−1)

+(−8c
E,y;1,1 + 8c

E,y;1,−1)]
1E′ 8c

E ′,x;0,0 =
1

√
2
(|100111〉 − |011011〉) 8so

9,E,x = 8c
E ′,x;0,0

8c
E ′,y;0,0 =

1
√

2
(|101101〉 − |011110〉) 8so

9,E,y = 8c
E ′,y;0,0

The symmetrized combinations of products of four MOs can be constructed by repeating the
process used to construct the above products of two MOs. Once the symmetrized products
of occupied MOs corresponding to each configuration state are constructed, the configuration
states are formed by performing a direct product with an associated spin state and transforming
the result into a linear combination of Slater determinants. The resulting configuration states
8c

j,k;S,ms
have definite orbital symmetry ( j denoting irreducible representation and k denoting

row of the irreducible representation), total spin S and spin projection ms, and are explicitly
contained in table 1. Note that the construction of the configuration states in this way
is completely analogous to LS coupling in atomic structure, where the atomic states are
constructed to have definite orbital (L , ml) and spin (S, ms) quantum numbers prior to the
introduction of spin–orbit interaction. The configuration states may also be expressed in terms
of holes rather than electrons, and these expressions are contained in table A.1. However, the
hole formalism will not be used in the remainder of this paper.

The configuration states are eigenstates of
∑

i ĥi , with each of the states of a MO
configuration having the same eigenenergy as depicted on the left-hand side of figure 3.
Employing the Wigner–Eckart theorem [32],

〈φ f,g|Ô p,q |φ j,k〉 =

(
j p f
k q g

)∗

〈φ f ‖Ô p‖φ j〉, (5)
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a1e
3

a21e
2

3A2

1E

1A1

3E

1E ′

1.190 eV

ES+1.945 eV

Figure 3. Energy level diagram of the orbital structure of the NV− centre. The
MO configuration energies are depicted on the left-hand side, and the splitting
into singlets and triplets due to the introduction of electronic Coulomb repulsion
is depicted on the right-hand side. The dashed lines indicate the locations of
the E singlet states prior to their Coulomb coupling. ε = 2〈exex |V̂ ee|eyey〉 is the
difference in the Coulomb energies between the ground MO configuration states
prior to the coupling of the E singlets. ES ≈ 0.235 eV is the Stokes shift of the
optical ZPL.

where Ô is a tensor operator, (g, q, k) denote the rows of the irreducible representations
( f, p, j) of the C3v group, respectively, and 〈‖‖〉 is the reduced matrix element, the
eigenenergies of each MO configuration can be expressed in terms of reduced matrix elements
involving the MOs

a2
1e2 : 2〈a1‖ĥ‖a1〉 + 2〈e‖ĥ‖e〉, a1e3 : 〈a1‖ĥ‖a1〉 + 3〈e‖ĥ‖e〉. (6)

The introduction of the Coulomb repulsion potential
∑

i> j V̂ ee(xi , x j) splits the MO
configurations into distinct triplet and singlet energy levels. The diagonal matrix elements of
the ground MO configuration triplet and singlets are

3A2 : C0 + 〈φA2(ee)‖V̂ ee‖φA2(ee)〉

1E: C0 + 〈φE(ee)‖V̂ ee‖φE(ee)〉

1A1 : C0 + 〈φA1(ee)‖V̂ ee‖φA1(ee)〉,

where

C0 = 〈φA1(a1a1)‖V̂ ee‖φA1(ee)〉 + 4〈φE(a1e)‖V̂ ee‖φE(a1e)〉 − 2〈φE(a1e)‖V̂ ee‖φE(ea1).

Hund’s rules indicate that the 3A2 triplet is the ground electronic state, which implies that
〈φA2(ee)‖V̂ ee‖φA2(ee)〉 < 〈φE(ee)‖V̂ ee‖φE(ee)〉, 〈φA1(ee)‖V̂ ee‖φA1(ee)〉. The difference in the
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singlet diagonal matrix elements is

ε = 〈φA1(ee)‖V̂ ee‖φA1(ee)〉 − 〈φE(ee)‖V̂ ee‖φE(ee)〉

= 2〈exex |V̂ ee|eyey〉

= 2
∫

ρxy(Er 1)V̂ ee(Er 1, Er 2)ρxy(Er 2) dEr 1 dEr 2, (7)

where ρxy(Er) = ex(Er)ey(Er). The above integral is a standard exchange integral of a charge
distribution ρ(Er), which has been proven to be positive definite. One such proof [33] from
electrostatics uses Green’s identity to show that∫

ρ(Er 1)
1

|Er 1 − Er 2|
ρ(Er 2) dEr 1 dEr 2 =

1

4π

∫
| EE(Er)|2 dEr > 0, (8)

where EE(Er) is the electric field generated by the finite charge distribution ρ(Er). Thus,
considering just the diagonal Coulomb matrix elements, the 1A1 singlet must be higher in energy
than the 1E singlet. It has been shown that the difference in the diagonal Coulomb matrix
elements of the 1E singlet and 3A2 triplet (〈φE(ee)‖V̂ ee‖φE(ee)〉 − 〈φA2(ee)‖V̂ ee‖φA2(ee)〉)
is equal to the difference between the two singlets ε [34], thereby confirming the ordering
indicated by Hund’s rules and implying that the states of the ground configuration are equally
spaced prior to coupling with states of higher MO configurations. Similar expressions for the
diagonal Coulomb matrix elements were derived in [34]; however, without the proof that ε is
positive definite, the ordering of the singlet and triplet states of the ground MO configuration
was not conclusively demonstrated in [34]. In the first excited MO configuration, Hund’s rules
also indicate that the 3E triplet has a smaller repulsion energy than the 1E′ singlet and a similar
argument to that used for the singlet ordering in the ground MO configuration has been shown
to confirm this ordering [35].

Since the only configuration states of the ground and first excited MO configurations that
have both the same orbital symmetry and spin state are the 1E and 1E′ singlets, these are the
only states that are coupled by the Coulomb repulsion potential, and all of the other states are
eigenstates of the orbital components of Ĥ NV, Ĥ o =

∑
i ĥi +

∑
i> j V̂ ee(xi , x j). The coupled E

singlet states 8c′

j,k;0,0 can be expressed as

8c′

E,k;0,0 = Nκ

[
8c

E,k;0,0 − κ8c
E ′,k;0,0

]
,

8c′

E ′,k;0,0 = Nκ

[
8c

E ′,k;0,0 + κ8c
E,k;0,0

]
,

(9)

where k = x, y and the coupling coefficient κ is a function of the Coulomb repulsion matrix
element 〈8c

E,k;0,0|V̂ ee|8
c
E ′,k;0,0〉 = 〈φE(a1e)‖V̂ ee‖φE(ee)〉,

κ =
2〈φE(a1e)‖V̂ ee‖φE(ee)〉

EE ′;0 − EE;0 +
√

(EE ′;0 − EE;0)2 + 4〈φE(a1e)‖V̂ ee‖φE(ee)〉2
, (10)

and Nκ = (1 + |κ|
2)−1/2 is the normalization constant. The interaction of the two E singlet states

will also force the singlets apart in energy, shifting the lower 1E singlet lower in energy towards
the ground triplet state and shifting the higher 1E′ singlet further higher in energy than the
excited triplet state.
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Defining E j;S to be the orbital energies of the configuration states, the derived orbital
structure prior to the introduction of spin–orbit and spin–spin interactions is depicted in
figure 3. The known optical ZPL (1.945 eV) and infrared ZPL (1.190 eV) transition energies
are also included in the figure. Notably, the energy separations of the triplet and singlet states
have not yet been observed. As indicated by (6), there are different interactions between the
electrons and nuclei in the ground and first excited MO configurations, such that (ignoring
the Coulomb coupling of 1E and 1E′) the configuration states of the ground MO configuration
have the same nuclear equilibrium coordinates, and likewise the configuration states of the first
excited MO configuration states have the same nuclear equilibrium coordinates, but these differ
from the equilibrium coordinates of the ground MO configuration. Defining the energy of the
ground 3A2 state to be zero (E A2;1 = 0), the energy of the 1A1 singlet can be expressed as
E A1;0 ≈ EE;0 + 1.190 eV, where the infrared ZPL has been directly used since, correct to first
order in κ , both 1A1 and 1E have the same nuclear equilibrium coordinates. The energy of
the excited 3E triplet in the nuclear equilibrium coordinates of the ground MO configuration
is EE;1 = ES + 1.945 ≈ 2.180 eV, where ES ≈ 0.235 eV is the Stokes shift of the optical
transition [28]. Thus, the configuration energies EE;0 and EE ′;0 of the E singlet states, alongside
their Coulomb coupling coefficient κ , are the first unknown parameters of the molecular
model.

A recent ab initio study [31] concluded that the upper 1E′ singlet energetically crossed the
3E triplet as the nearest-neighbour carbon and nitrogen nuclei were displaced while maintaining
C3v symmetry (nitrogen nucleus displaced inwards towards the vacancy and the carbon nuclei
displaced outwards away from the vacancy). The preceding argument clearly shows that this
can only be the case if there existed a strong Coulomb repulsion interaction between the 1E′

singlet and a higher energy E symmetric singlet. Such an interaction would force the 1E′ singlet
lower in energy and if it were large enough, it could potentially overcome the repulsion from
the lower 1E singlet and the difference in the Coulomb energies between the 1E′ singlet and the
3E triplet. The higher energy E singlet that produces this effect is most likely the 1E′′ singlet
that arises from the second excited MO configuration a′

1a2
1e3. It is also possible that the higher

energy E singlet arises from conduction band states. The other relevant second excited MO
configuration a′2

1 e4 forms an 1A′

1 singlet. Consequently, the singlets of these two second excited
MO configurations could potentially force the E and A1 singlets of the ground and first excited
MO configurations down in energy by different amounts, resulting in the 1A1 crossing one of
the E singlets. The most recent ab initio studies [30, 31] indicate that the ordering of the ground
MO configuration singlets depicted in figure 3 is correct, and without further evidence that the
second excited MO configuration states significantly shift the positions of the lower singlets,
the simple orbital structure of figure 3 will be assumed. Due to the parametric formulation of
the molecular model, the failure of this assumption will not affect the validity of the expressions
derived in this analysis.

The recent ab initio study [30] indicates that the 1A1 singlet is close to and possibly
higher in energy than the 3E triplet. As the quantitative values of the Coulomb repulsion
matrix elements are not known, the preceding analysis cannot offer a definitive conclusion
on the ordering of the 1A1 singlet in relation to the 3E triplet. The current understanding
of the mechanisms of spin polarization and optical dynamics [24, 36] appears to strongly
indicate that a singlet state is close, but lower in energy than the 3E triplet. Therefore, further
ab initio work is required to definitively determine the ordering of the 1A1, 3E and 1E′

states.
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So far, it has been shown how the orbital structure of the NV− centre can be derived
from the definition of the centre’s MOs. The configuration states that have been obtained are
solutions of the orbital components Ĥ o of the centre’s Hamiltonian and the orbital structure was
determined up to the two unknown energies of the E symmetric singlets. The analysis of the
Coulomb repulsion matrix elements has offered an insight into the contention surrounding the
ordering of the intermediate singlet states. In the next section, the spin–orbit V̂ so and electronic
spin–spin V̂ ss potentials will be treated as first-order perturbations to Ĥ o, and the fine structure
and mixing of electronic spin of the centre will be determined.

3. The fine structure and mixing of electronic spin

The construction of the configuration states in the previous section to have a well-defined orbital
symmetry aided in simplifying the treatment of the orbital components Ĥ o of the centre’s
Hamiltonian. Since spin–orbit and spin–spin interactions act on both the electronic orbital
and spin coordinates, their treatment can be likewise greatly simplified by constructing linear
combinations of the configuration states that have well-defined spin–orbit symmetry. This can
be done by first defining the combinations of the S = 1, 0 spin states (|S, ms〉) that transform as
particular rows of irreducible representations of the C3v group [23]

SA1 = |0, 0〉, SA2 = |1, 0〉,

SE,x =
−i
√

2
(|1, 1〉 + |1, −1〉), SE,y =

−1
√

2
(|1, 1〉 − |1, −1〉).

(11)

In an analogous method to that used in constructing the combinations of products of two MOs
that had well-defined symmetry, the above symmetrized spin states can be used in conjunction
with the configuration states to construct the symmetrized spin–orbit states 8so

n, j,k contained in
table 1, where n denotes the energy level and j and k denote the irreducible representation and
row that the spin–orbit state transforms as in spin–orbit space.

The spin–orbit and spin–spin interaction potentials are [37]

V̂ so =
1

2m2c2

∑
i

E∇ V̂Ne(Er i) × Epi · Esi ≡

∑
i

Eλi · Eσ i ,

V̂ ss =
µ0g2

eµ
2
B

4π h̄2

∑
i> j

Esi · Es j

|Er i j |
3

−
3(Esi · Er i j)(Er i j · Es j)

|Er i j |
5

≡

∑
i> j

Eσ i · D̄i j · Eσ j

(12)

where Epi and Esi = (h̄/2) Eσ i are the momentum and spin operators of the i th electron, Er i j =

Er j − Er i = xi j Ex + yi j Ey + zi j Ez ( Ex, Ey, Ez are unit coordinate vectors), ge is the free electron g-factor,
and Eλ and D̄ are rank one and two orbital tensor operators respectively. The components of the
orbital tensor operators are

Eλ = −λ̂E,y Ex + λ̂E,x Ey + λ̂A2 Ez,

D̄ =


−

1
2 D̂ A1 − D̂E,x,1 D̂E,y,1 −D̂E,x,2

D̂E,y,1 −
1
2 D̂ A1 + D̂E,x,1 −D̂E,y,2

−D̂E,x,2 −D̂E,y,2 D̂ A1

,

(13)
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Table 2. The matrix representation of the spin–orbit interaction potential in the
basis {8so

1,A1
, 8so

2,E,x , 8
so
2,E,y, 8

so
3,E,x , 8

so
3,E,y, 8

so
4,A1

, 8so
5,E,x , 8

so
5,E,y, 8

so
6,E,x , 8

so
6,E,y,

8so
7,A2

, 8so
8,A1

, 8so
9,E,x , 8

so
9,E,y}. The spin–orbit parameters λ‖ and λ⊥ are defined

in table 4. The lower half of the matrix can be obtained using the Hermitian
property of the spin–orbit potential.

0 0 0 0 0 −2iλ‖ 0 0 0 0 0
√

2λ⊥ 0 0
0 0 0 0 0 0 0 −λ⊥ 0 0 0 −iλ⊥ 0

0 0 0 0 0 0 0 −λ⊥ 0 0 0 −iλ⊥

0 0 0 −i
√

2λ⊥ 0 0 0 0 0 0 0
0 0 0 −i

√
2λ⊥ 0 0 0 0 0 0

0 0 0 0 0 0 i
√

2λ⊥ 0 0
−λ‖ 0 0 0 0 0 0 0

−λ‖ 0 0 0 0 0 0
0 0 0 0 −iλ‖ 0

0 0 0 0 −iλ‖

λ‖ 0 0 0
λ‖ 0 0

0 0
0

where

D̂ A1 =
µ0g2

eµ
2
B

16π |Er i j |
3

(
1 −

3z2
i j

|Er i j |
5

)
,

D̂E,x,1 =
µ0g2

eµ
2
B

32π |Er i j |
3

3(x2
i j − y2

i j)

|Er i j |
5

, D̂E,y,1 = −
µ0g2

eµ
2
B

32π |Er i j |
3

6xi j yi j

|Er i j |
5

,

D̂E,x,2 =
µ0g2

eµ
2
B

16π |Er i j |
3

3zi j xi j

|Er i j |
5

, D̂E,y,2 =
µ0g2

eµ
2
B

16π |Er i j |
3

3zi j yi j

|Er i j |
5

.

Using the spin–orbit states of table 1 and the above definitions of the tensor operators, the
application of the Wigner–Eckart theorem allows the computation of the matrix representations
of the spin–orbit and spin–spin potentials in terms of one- and two-electron reduced matrix
elements. The matrix representations are contained in tables 2 and 3 and the reduced matrix
element expressions are contained in table 4. Note that as only the spin–orbit states associated
with the triplet configuration states have non-zero spin–spin matrix elements, the matrix
representation of the spin–spin potential is presented in the reduced basis of triplet spin–orbit
states. In order to maintain clarity, only the upper triangle of the matrix representations have
been presented. The lower half can be inferred using the Hermitian property of the potentials
and the fact that each of the reduced matrix element expressions is real.

In calculating the non-axial orbital components of the spin–orbit potential, it was concluded
that the reduced matrix element 〈e‖λE‖e〉 must be zero and so it was not included in
the matrix representation of table 2. This follows from the fact that as λE,x is a purely
imaginary Hermitian orbital operator and its diagonal matrix elements in the MO basis
are 〈ex |λE,x |ex〉 =

1
√

2
〈e‖λE‖e〉 = −〈ey|λE,x |ey〉, these diagonal matrix elements must vanish,
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Table 3. The matrix representation of spin–spin interaction potential in the
triplet basis {8so

1,A1
, 8so

2,E,x , 8
so
2,E,y, 8

so
5,E,x , 8

so
5,E,y, 8

so
6,E,x , 8

so
6,E,y, 8

so
7,A2

, 8so
8,A1

}.
The spin–spin parameters are defined in table 4. The lower half of the matrix
can be obtained using the Hermitian property of the spin–spin potential.

−2D1,A1 0 0 0 0 0 0 0
√

2D1,E,2

D1,A1 0
√

2D1,E,1 0 D1,E,2 0 0 0
D1,A1 0

√
2D1,E,1 0 D1,E,2 0 0

D2,A1 0
√

2D2,E,2 0 0 0
D2,A1 0

√
2D2,E,2 0 0

−2D2,A1 0 0 0
−2D2,A1 0 0

D2,A1 − 2D2,E,1 0
D2,A1 + 2D2,E,1

Table 4. The spin–orbit and spin–spin parameters of the molecular model
expressed in terms of one- and two-electron reduced matrix elements containing
the MOs. The reduced matrix elements can be related to the matrix
elements of the spin–orbit and spin–spin operators (13) using the definition
of the Wigner–Eckart theorem (5), the Clebsch–Gordan coefficients [23],
the definitions of the two-electron orbitals (4) and the identifications
DE,x,1, DE,y,1 ∼ DE,1 and DE,x,2, DE,y,2 ∼ DE,2. Known values [16] and
estimated order of magnitude of unknown values are contained in the rightmost
column.

Parameter Expression Value

λ‖ −i〈e‖λA2‖e〉 5.3 GHz
λ⊥

−i
√

2
〈a1‖λE‖e〉 ∼GHz

D1,A1 2〈φA2(ee)‖DA1‖φA2(ee)〉 2.87/3 GHz
D1,E,1 4〈φE (ae)‖DE,1‖φA2(ee)〉 ∼MHz
D1,E,2 −4〈φE (ae)‖DE,2‖φA2(ee)〉 ∼MHz
D2,A1 〈φE (ae)‖DA1‖φE (ae)〉 − 〈φE (ae)‖DA1‖φE (ea)〉 1.42/3 GHz
D2,E,1 −2(〈φE (ae)‖DE,1‖φE (ae)〉 − 〈φE (ae)‖DE,1‖φE (ea)〉) 1.55/2 GHz
D2,E,2 2(〈φE (ae)‖DE,2‖φE (ae)〉 − 〈φE (ae)‖DE,2‖φE (ea)〉) 200/

√
2 MHz

implying that 〈e‖λE‖e〉 = 0. In [34], this result 〈e‖λE‖e〉 = 0 was stated without explicit
analytical proof; however, Maze [34] did provide numerical evidence that supports this result. In
a previous application of the molecular model to the fine structure of the excited triplet state [18],
this conclusion was not made and the coupling of 8so

5,E,k and 8so
6,E,k was incorrectly assigned as

arising from the non-axial spin–orbit interaction matrix element −i
√

2〈e‖λE‖e〉 instead of the
correct spin–spin interaction matrix element

√
2D2,E,2 as contained in table 3. The observation

that spin–spin interaction couples 8so
5,E,k and 8so

6,E,k has also been made independently in [34].
As the spin–orbit and spin–spin matrix elements are observed to be of the order of

MHz–GHz [16, 18] and the energy separations of the singlet and triplet states are expected
to be of the order of meV–eV (∼102–105 GHz), it is appropriate to treat the spin–orbit and
spin–spin potentials together as first-order perturbations to Ĥ o. The configuration energies
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Table 5. The electronic energies correct to first order in spin–orbit and spin–spin
interactions. The energies calculated using the known parameters of table 4 are
provided on the right column.

En E (0)
n E (1)

n Calculated

E1 = E A2;1 −2D1,A1 −1.91 GHz
E2 = E A2;1 +D1,A1 0.957 GHz
E3 = EE;0 – –
E4 = E A1;0 – –
E5 = EE;1 −

1
2 (λ‖ + D2,A1) −

1
2 [(λ‖ − 3D2,A1)

2 + 8|D2,E,2|
2]

1
2 EE;1 − 4.84 GHz

E6 = EE;1 −
1
2 (λ‖ + D2,A1) + 1

2 [(λ‖ − 3D2,A1)
2 + 8|D2,E,2|

2]
1
2 EE;1 − 0.936 GHz

E7 = EE;1 +λ‖ + D2,A1 − 2D2,E,1 EE;1 + 4.22 GHz
E8 = EE;1 +λ‖ + D2,A1 + 2D2,E,1 EE;1 + 7.32 GHz
E9 = EE ′;0 – –

3A2

E2

E1

3D1,A1

3E

E5

E6

E7

E8

2Ω

4D2,E,1

∆

−12∆

3E

±1

±1

0

±1

±1

0

2db,E|ξ⊥|

2D2,E,1

2D2,E,1

3D2,A1

3D2,A1

Ey

Ex

(a) (b) (c)

Figure 4. Energy level diagrams of the fine structure of the 3A2 and 3E triplets of
the NV− centre: (a) 3A2 fine structure independent of strain; (b) 3E fine structure
in the absence of strain; and (c) 3E fine structure in the limit of large non-
axial strain |ξ⊥|. Expressions for the energies En are contained in table 5 and
1 = λ‖ + D2,A1 and � =

1
2 [(λ‖ − 3D2,A1)

2 + 8|D2,E,2|
2]1/2. The strain interaction

parameter db,E |ξ⊥| is defined in (18).

E j;S and spin–orbit states {8so
n, j,k} are then the zero-order energies and electronic states of

the perturbation expansion. The application of first-order perturbation theory yields the fine
structure energies En contained in table 5 and depicted in figure 4 as well as the coupling
coefficients contained in table A.2. The first-order corrected electronic states 8so′

n, j,k are defined
in terms of the coupling coefficients by

8so′

n, j,k = Nn

[
s(0)

n,n8
so
n, j,k +

∑
m

(s(1)
n,m + s(2)

n,m)8so
m, j,k

]
, (14)
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where Nn is the normalization constant. The coefficient η contained in table A.2 is the coefficient
that arises from the coupling of the degenerate 8so

5,E,k and 8so
6,E,k states of the 3E triplet due to

spin–spin interaction and is expressed in terms of the spin–orbit and spin–spin parameters as

η =
2
√

2D2,E,2

λ‖ − 3D2,A1 + [(λ‖ − 3D2,A1)
2 + 8|D2,E,2|

2]1/2
(15)

and Nη = (1 + |η|
2)−1/2 is the associated normalization constant. Note that the coefficients s(2)

n,m
do not denote coefficients that are truly second order in the spin–orbit and spin–spin parameters,
but rather contain the first-order products of the Coulomb κ and degenerate spin–spin η

coefficients with the other spin–orbit and spin–spin coefficients. As κ and η are expected to
be orders of magnitude larger than the other spin–orbit and spin–spin coefficients, the s(2)

n,m

coefficients may potentially be only slightly smaller than the s(1)
n,m coefficients.

The spin–orbit and spin–spin parameters that are contained in the first-order energies of
table 5 have been determined in previous studies [16, 18] by directly observing the fine structure
of the ground and excited triplet states and modelling the variation of the excited triplet fine
structure with the application of strain and electric fields at low temperatures. The values
of these known parameters are contained alongside the unknown parameters in table 4. The
unknown parameters are all involved only in the first-order couplings of the spin–orbit states
of the singlets and triplets and do not contribute to the first-order energies. Consequently, the
effect of these unknown parameters can only be indirectly detected through the observation
of interactions of the centre with electric, magnetic and strain perturbations that cannot be
explained by the zero-order spin–orbit states and the coupling coefficients arising from the
known parameters. Examples of such interactions are the presence of the Stark effect in the
ground state triplet [7, 25] and the anisotropy of the ground state effective g-factor [26].
Frustratingly, it is precisely these unknown parameters that are likely to govern the process
of spin polarization as they allow forbidden transitions between the triplet and singlet states;
however, this will not be discussed further in this article. Using the known values of similar
parameters, the estimated orders of magnitude of the unknown parameters are also contained in
table 4.

4. Electric, magnetic and strain interactions

The Stark shift V̂ S, Zeeman effect V̂ Z and strain V̂ ξ potentials that describe the centre’s
interaction with electric EE , magnetic EB and effective strain Eξ fields are

V̂ S =

∑
i

Ed i · EE, V̂ Z =
µB

h̄

∑
i

(El i + geEsi) · EB, V̂ ξ =

∑
i

Ed i · Eξ, (16)

where Ed i = eEr i is the electric dipole operator and El i = Er i × Epi is the orbital magnetic moment
operator. Note that the above effective expression for the strain potential (in which strain is
treated as an effective local electric field) is derived using the group operator replacement
theorem [32] and can be unambiguously interpreted for uniaxial strain, but some care is required
in its interpretation for non-uniaxial strain.

Each of these potentials contain operators that act on just the electronic orbital coordinates
and can be written in terms of sums of orbital tensor operators with definite symmetry
properties

Ed i = d̂ E,x Ex + d̂ E,y Ey + d̂ A1 Ez, El i = −l̂ E,y Ex + l̂ E,x Ey + l̂ A2 Ez. (17)
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Figure 5. Plot of the variation of the 3E triplet fine structure with the magnitude
of the applied non-axial strain |ξ⊥|. The plot was produced using the known
spin–orbit and spin–spin parameters of table 4 and the matrix representation of
the strain interaction (18).

As the spin–orbit states constructed in the last section are simple linear combinations of
configuration states that have both well-defined orbital symmetry and spin, it is straightforward
to apply the Wigner–Eckart theorem to calculate the matrix representations of each of the tensor
orbital operators in terms of a set of reduced matrix elements. Since the expressions for the
reduced matrix elements are identical for all orbital tensor operators of the same symmetry,
the matrix representations of general orbital tensor operators Ô =

∑
i Ô i of each symmetry

are contained in tables A.3 and A.4. The matrix representation of the electron spin operator
ES =

∑
i Esi is contained in table A.5. These matrix representations can be immediately applied

to calculate the effects of the different electric, magnetic and strain interactions in the basis of
the zero-order spin–orbit states.

For example, the matrix representation of the strain potential in the basis of the zero-order
spin–orbit states of the 3E triplet {8so

5,E,x , 8
so
5,E,y, 8

so
6,E,x , 8

so
6,E,y, 8

so
7,A2

, 8so
8,A1

} is

Vξ [3E]

=



db,A1ξz 0 0 0 −db,Eξy −db,Eξx

0 db,A1ξz 0 0 db,Eξx −db,Eξy

0 0 db,A1ξz + db,Eξx −db,Eξy 0 0

0 0 −db,Eξy db,A1ξz − db,Eξx 0 0

−db,Eξy db,Eξx 0 0 db,A1ξz 0

−db,Eξx −db,Eξy 0 0 0 db,A1ξz


, (18)

where db,A1 = 〈a1‖dA1‖a1〉 + 3〈e‖dA1‖e〉 and db,E = 〈e‖dE‖e〉. Previous studies [16, 18] have
shown that the above matrix representation yields a strain variation of the 3E triplet fine struc-
ture that agrees excellently with observation. A theoretical plot of the effect of non-axial strain
is depicted in figure 5 and it clearly shows that non-axial strain splits the 3E fine structure into
upper and lower branches. Due to the D2,E,2 spin–spin parameter that couples the ms = 0 and
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±1 configuration states, there exist two level anti-crossings in the lower branch as the ms = 0
changes from being the highest energy state of the lower branch to the lowest energy state [18].
In the vicinity of these anti-crossings, the states of the lower branch are all significant mixtures
of the different spin sub-levels [18]. As there is no anti-crossing in the upper branch, the
mixing of the spin sub-levels in the states of the upper branch does not significantly vary with
strain [18].

In the limit of large strain the upper and lower branches become identical, with the
same mixing and splitting of the spin sub-levels. This can be demonstrated by calculating the
matrix representations of the spin–orbit, spin–spin and strain potentials in the basis of the 3E
configuration states {8c

E,x;1,0, 8
c
E,x;1,1, 8

c
E,x;1,−1, 8

c
E,y;1,0, 8

c
E,y;1,1, 8

c
E,y;1,−1}

Vso[3E] + Vss[3E] =



−2D2,A1

D2,E,2
√

2
−

D2,E,2
√

2
0 −D2,E,2

√
2

−D2,E,2
√

2
D2,E,2
√

2
D2,A1 D2,E,1

D2,E,2
√

2
λ‖ −D2,E,1

−D2,E,2
√

2
D2,E,1 D2,A1

D2,E,2
√

2
D2,E,1 −λ‖

− −− − −− − −− − −− − −− − −− − −− − − −−−

0 D2,E,2
√

2

D2,E,2
√

2
−2D2,A1

−D2,E,2
√

2

D2,E,2
√

2
−D2,E,2

√
2

λ‖ D2,E,1
−D2,E,2

√
2

D2,A1 −D2,E,1

−D2,E,2
√

2
−D2,E,1 −λ‖

D2,E,2
√

2
−D2,E,1 D2,A1


,

Vξ [3E] =



−db,Eξx 0 0 db,Eξy 0 0

0 −db,Eξx 0 0 db,Eξy 0

0 0 −db,Eξx 0 0 db,Eξy
− −− − −− − −− − −− − −− − −− − −− − −−

db,Eξy 0 0 db,Eξx 0 0

0 db,Eξy 0 0 db,Eξx 0

0 0 db,Eξy 0 0 db,Eξx


.

(19)

Clearly, if a ξx strain was applied such that db,Eξx was much larger than the spin–orbit and
spin–spin parameters, then the influence of the matrix elements of the upper right and lower left
blocks would become insignificant and the configuration states would separate into identical
Ex and Ey orbital branches. The off diagonal spin–spin matrix elements in the diagonal blocks
are responsible for the mixing and splitting of the spin sub-levels within each branch. The fine
structure of the 3E triplet in the high strain limit is also depicted in figure 4.

Strain also affects the 1E′ singlet and, only after the Coulomb coupling of the E singlets,
affects the 1E singlet as well at first order. The matrix representations of the strain potential
correct to first order in κ in each of the corresponding basis sets {8c′

3,E,x , 8
c′

3,E,y} and
{8c′

9,E,x , 8
c′

9,E,y} are

Vξ [1E] = N 2
κ

(
da,A1ξz + 2κda,Eξx −2κda,Eξy

−2κda,Eξy da,A1ξz − 2κda,Eξx

)
,

Vξ [1E′] = N 2
κ

(
db,A1ξz − (db,E + 2κda,E)ξx (db,E + 2κda,E)ξy

(db,E + 2κda,E)ξy db,A1ξz + (db,E + 2κda,E)ξx

)
,

(20)
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where da,A1 = 2〈a1‖dA1‖a1〉 + 2〈e‖dA1‖e〉 and da,E = 〈a1‖dE‖e〉. The strain splitting of the 1E′

singlet has not yet been directly observed; however, the strain splitting of the 1E singlet
has been observed [14] in the strain dependence of the infrared transition at 1.190 eV,
thereby confirming the coupling of the E symmetric singlets. Investigations of this strain
splitting and the information that it can provide about the mixing of the E singlets are
ongoing.

The matrix elements of tables A.3 and A.4 can be used to correlate the electric dipole
moments of the centre. The electric dipole moments responsible for the optical transitions
between the states of the ground and first excited MO configurations are all proportional to
da,E . The electric dipole moment db,E responsible for the observed Stark effect in 3E is the
same as the dipole moment of the infrared transition between 1A1 and 1E. Consequently, even
though 1A1 and 1E belong to the same MO configuration, there is an appreciable dipole moment
associated with the transition between them.

The operator matrix representations constructed in this section may also be used in
conjunction with the first-order corrected spin–orbit states presented in the previous section
to investigate the appearance of interactions at first and higher orders in the spin–orbit and
spin–spin parameters. As discussed, these interactions provide important information on the
unknown parameters and should be the subject of future investigations.

5. The room temperature electronic structure

The dynamic Jahn–Teller effect has been observed in the 3E triplet [20]. This effect arises from
the vibronic coupling of the spin–orbit states of the triplet [38]. The presence of the dynamic
Jahn–Teller effect has the consequence that with increasing temperature E symmetric phonons
drive transitions between the states of the triplet. The phonon rates are dependent on temperature
and firstly are observed to give an unusual temperature dependence of the optical linewidths
and at higher temperatures the phonon transition rates become much greater than the observable
lifetimes of the states [39]. At this point, any population that is excited into one of the states is
distributed to the other states that it is coupled with before any radiative decay can occur. If the
phonon transitions distribute equal population to each of the coupled states, then the radiative
transition will have the average energy of the coupled states. This process has been previously
discussed in the literature as orbital averaging [19].

Since electron–phonon coupling is an orbital operator, the matrix representations (18) and
(19) of an orbital operator in the 3E triplet can be used to determine the selection rules of the
phonon transitions. The allowed transitions are depicted in figure 6 for both the low and high
strain cases. It is clear that for both the low and high strain cases, the phonon transitions will
distribute population between the states of a particular spin projection, and since the transition
matrix elements are identical for each transition, there will be approximately equal population
distributed to each of the states of a given spin sub-level. Due to the coupling of the states
with ms = ±1 spin projections by the D2,E,1 spin–spin parameter, the population will also be
distributed between these sub-levels. Thus, regardless of strain, the fine structure of the 3E triplet
will average to a single splitting of 3D2,A1 = 1.42 GHz between the ms = 0 and ±1 spin sub-
levels arising from spin–spin interaction (as depicted in figure 6). Therefore, as observed [19],
the fine structure of the 3E triplet at room temperature does not vary between NV− centres
and appears as an effective orbital singlet split by spin–spin, similar to the ground 3A2

triplet.
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Figure 6. Schematics of the fine structure of the 3E triplet at low temperature
and low strain (left), at low temperature and high strain (right) and at ambient
temperature (centre). The solid arrows indicate allowed phonon transitions and
the dashed arrow indicates the transition allowed once D2,E,1 spin–spin coupling
within the two orbital branches in the high strain case is introduced. The plot
demonstrates that if there were equal population in each of the phonon coupled
states, the fine structure would average to the central structure with a single
spin–spin splitting of 3D2,A1 = 1.42 GHz regardless of strain.

The matrix representations of orbital operators in the 1E and 1E′ singlets (20) indicate that
these states should also be susceptible to the dynamic Jahn–Teller effect, although this has not
yet been observed. The Jahn–Teller effect is likely to have significant consequences for the non-
radiative dynamics of these states and influence their possible participation in the centre’s spin
polarization process. Clearly, the model of the Jahn–Teller effect in the NV− centre needs to
be developed in greater detail to fully understand the temperature dependence of the centre’s
properties and the role of the Jahn–Teller effect in spin polarization.

6. Conclusion

In this paper, the molecular model of the NV− centre’s electronic structure was developed
in full. Through the explicit analysis of the Coulomb repulsion interaction, an insight was
gained into the many competing factors that influence the energetic ordering of the singlet
states of the ground and first excited MO configurations. Using a proof of the positive definite
nature of the Coulomb repulsion separation of the states of the ground MO configuration, the
simplest consistent orbital structure was adopted and the avenues of further investigation and
routes to confirmation identified. Having obtained the orbital structure, spin–orbit and spin–spin
interactions were treated using perturbation theory and the centre’s fine structure and first-order
state couplings were determined. The results were expressed in terms of the simplest set of
one- and two-electron reduced matrix elements, allowing direct insight into which parameters
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were known and how to pursue the remaining unknown parameters. The calculation of the
matrix representations of the centre’s interactions with electric, magnetic and strain fields
allowed an efficient discussion of the effects of strain on the centre’s fine structure. The matrix
representations also formed the basis of a short discussion of the temperature dependence of the
centre’s fine structure and highlighted the central role that the dynamic Jahn–Teller effect plays
in the centre’s dynamics.
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Appendix

Table A.1. The configuration states expressed in terms of holes rather than
electrons. Note that the hole formalism has not been used in this paper and these
expressions are provided to assist the readers who have previously used the hole
formalism.

8c
j,k;S,ms

8so
n, j,k

e2 3A2 8c
A2;1,0 =

1
√

2
(|ex ēy〉 + |ēx ey〉) 8so

1,A1
= 8c

A2;1,0

8c
A2;1,1 = |ēx ēy〉 8so

2,E,x =
−1
√

2
(−8c

A2;1,1 + 8c
A2;1,−1)

8c
A2;1,−1 = |ex ey〉 8so

2,E,y =
−i
√

2
(8c

A2;1,1 + 8c
A2;1,−1)

1E 8c
E,x;0,0 =

1
√

2
(|ey ēy〉 − |ex ēx 〉) 8so

3,E,x = 8c
E,x;0,0

8c
E,y;0,0 =

1
√

2
(|ex ēy〉 − |ēx ey〉) 8so

3,E,y = 8c
E,y;0,0

1A1 8c
A1;0,0 =

1
√

2
(|ey ēy〉 + |ex ēx 〉) 8so

4,A1
= 8c

A1;0,0

a1e 3E 8c
E,x;1,0 =

1
√

2
(|ā1ex 〉 + |a1ēx 〉) 8so

5,E,x =
1
2

[
−i(8c

E,x;1,1 + 8c
E,x;1,−1))

−(−8c
E,y;1,1 + 8c

E,y;1,−1)]
8c

E,y;1,0 =
1

√
2
(|ā1ey〉 + |a1ēy〉) 8so

5,E,y =
1
2

[
−(−8c

E,x;1,1 + 8c
E,x;1,−1)

+i(8c
E,y;1,1 + 8c

E,y;1,−1)]
8c

E,x;1,1 = |ā1ēx 〉 8so
6,E,x = −8c

E,y;1,0

8c
E,y;1,1 = |ā1ēy〉 8so

6,E,y = 8c
E,x;1,0

8c
E,x;1,−1 = |a1ex 〉 8so

7,A2
=

1
2

[
(−8c

E,x;1,1 + 8c
E,x;1,−1)

+i(8c
E,y;1,1 + 8c

E,y;1,−1)]
8c

E,y;1,−1 = |a1ey〉 8so
8,A1

=
1
2

[
−i(8c

E,x;1,1 + 8c
E,x;1,−1))

+(−8c
E,y;1,1 + 8c

E,y;1,−1)]
1E′ 8c

E ′,x;0,0 =
1

√
2
(|ā1ex 〉 − |a1ēx 〉) 8so

9,E,x = 8c
E ′,x;0,0

8c
E ′,y;0,0 =

1
√

2
(|ā1ey〉 − |a1ēy〉) 8so

9,E,y = 8c
E ′,y;0,0
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Table A.2. The electronic coupling coefficients correct to first order in spin–orbit
and spin–spin. Parameters are the same as defined in table 4.

sn,m s(0)
n,m s(1)

n,m s(2)
n,m

s1,1 = 1 – –
s1,4 = – −2i λ‖

E A1;0
–

s1,8 = – −
√

2 λ⊥+D1,E,2

EE;1
–

s2,2 = 1 – –
s2,3 = – – iNκκ

λ⊥

EE;0

s2,5 = – −
√

2Nη
D1,E,1

EE;1
−Nηη

λ⊥−D1,E,2

EE;1

s2,6 = – Nη
λ⊥−D1,E,2

EE;1
−

√
2Nηη

D1,E,1

EE;1

s2,9 = – −iNκ
λ⊥

EE ′ ;0
–

s3,3 = Nκ – –
s3,2 = – – iNκκ

λ⊥

EE;0

s3,5 = – −i
√

2Nκ Nη
λ⊥

EE;1−EE;0
–

s3,6 = – – −iNκ Nη
κλ‖+

√
2ηλ⊥

EE :1−EE :0

s3,9 = – −Nκκ –
s4,4 = 1 – –
s4,1 = – −2i λ‖

E A1;0
–

s4,8 = – i
√

2 λ⊥

EE;1−E A1;0
–

s5,5 = Nη – –
s5,2 = –

√
2Nη

D1,E,1

EE;1
Nηη

λ⊥−D1,E,2

EE :1

s5,3 = – −i
√

2Nκ Nη
λ⊥

EE :1−EE :0
–

s5,6 = – −Nηη –

s5,9 = – – iNκ Nη
ηλ‖+

√
2κλ⊥

EE ′ ;0−EE;1

s6,6 = Nη – –
s6,2 = – −Nη

λ⊥−D1,E,2

EE :1

√
2Nηη

D1,E,1

EE;1

s6,3 = – – −iNκ Nη
κλ‖+

√
2ηλ⊥

EE;1−EE;0

s6,5 = – Nηη –
s6,9 = – −iNκ Nη

λ‖

EE ′ ;0−EE :1
–

s7,7 = 1 – –
s8,8 = 1 – –
s8,1 = –

√
2 λ⊥+D1,E,2

EE;1
–

s8,4 = – i
√

2 λ⊥

EE;1−E A1;0
–

s9,9 = Nκ – –
s9,2 = – −iNκ

λ⊥

EE ′ ;0
–

s9,3 = – Nκκ –

s9,5 = – – iNκ Nη
ηλ‖+

√
2κλ⊥

EE ′ ;0−EE;1

s9,6 = – −iNκ Nη
λ‖

EE ′ ;0−EE;1
–
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Table A.3. Combined matrix representation of Ô A1 and Ô A2 orbital
operators in the basis {8so

1,A1
, 8so

2,E,x , 8
so
2,E,y, 8

so
3,E,x , 8

so
3,E,y, 8

so
4,A1

, 8so
5,E,x , 8

so
5,E,y,

8so
6,E,x , 8

so
6,E,y , 8so

7,A2
, 8so

8,A1
, 8so

9,E,x , 8
so
9,E,y}. To obtain the matrix representation

of Ô A1 , set OA2 → 0, Oa,A1 → 2(〈a1‖VA1‖a1〉 + 〈e‖VA1‖e〉) and Ob,A1 →

〈a1‖VA1‖a1〉 + 3〈e‖VA1‖e〉. To obtain the matrix representation of Ô A2 , set
OA2 → 〈e‖VA2‖e〉, Oa,A1 → 0 and Ob,A1 → 0.

Oa,A1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 Oa,A1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 Oa,A1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 Oa,A1 2OA2 0 0 0 0 0 0 0 0 0
0 0 0 −2OA2 Oa,A1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 Oa,A1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 Ob,A1 OA2 0 0 0 0 0 0
0 0 0 0 0 0 −OA2 Ob,A1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 Ob,A1 −OA2 0 0 0 0
0 0 0 0 0 0 0 0 OA2 Ob,A1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 Ob,A1 −OA2 0 0
0 0 0 0 0 0 0 0 0 0 OA2 Ob,A1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 Ob,A1 −OA2

0 0 0 0 0 0 0 0 0 0 0 0 OA2 Ob,A1

Table A.4. Combined matrix representation of Ô E,x and Ô E,y orbital
operators in the basis {8so

1,A1
, 8so

2,E,x , 8
so
2,E,y, 8

so
3,E,x , 8

so
3,E,y, 8

so
4,A1

, 8so
5,E,x , 8

so
5,E,y,

8so
6,E,x , 8

so
6,E,y , 8so

7,A2
, 8so

8,A1
, 8so

9,E,x , 8
so
9,E,y}. To obtain the matrix representation

of Ô E,x , set Oa,x →
1

√
2
〈a1‖VE‖e〉, Oa,y → 0, Ob,x →

1
√

2
〈e‖VE‖e〉 and

Ob,y → 0. To obtain the matrix representation of ÔE,y , set Oa,y →
1

√
2
〈a1‖VE‖e〉,

Oa,x → 0, Ob,y →
1

√
2
〈e‖VE‖e〉 and Ob,x → 0.

0 0 0 0 0 0 0 0 Oa,x Oa,y 0 0 0 0
0 0 0 0 0 0 −

Oa,x
√

2

Oa,y
√

2
0 0 −

Oa,y
√

2
Oa,x
√

2
0 0

0 0 0 0 0 0 Oa,y
√

2
Oa,x
√

2
0 0 Oa,x

√
2

Oa,y
√

2
0 0

0 0 0 0 0 2Ob,x 0 0 0 0 0 0 −Oa,x Oa,y

0 0 0 0 0 2Ob,y 0 0 0 0 0 0 Oa,y Oa,x

0 0 0 2Ob,x 2Ob,y 0 0 0 0 0 0 0 Oa,x Oa,y

0 −
O∗

a,x
√

2

O∗
a,y

√
2

0 0 0 0 0 0 0 −Ob,y −Ob,x 0 0

0
O∗

a,y
√

2

O∗
a,x

√
2

0 0 0 0 0 0 0 Ob,x −Ob,y 0 0

O∗
a,x 0 0 0 0 0 0 0 Ob,x −Ob,y 0 0 0 0

O∗
a,y 0 0 0 0 0 0 0 −Ob,y −Ob,x 0 0 0 0

0 −
O∗

a,y
√

2

O∗
a,x

√
2

0 0 0 −Ob,y Ob,x 0 0 0 0 0 0

0
O∗

a,x
√

2

O∗
a,y

√
2

0 0 0 −Ob,x −Ob,y 0 0 0 0 0 0

0 0 0 −O∗
a,x O∗

a,y O∗
a,x 0 0 0 0 0 0 −Ob,x Ob,y

0 0 0 O∗
a,y O∗

a,x O∗
a,y 0 0 0 0 0 0 Ob,y Ob,x
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Table A.5. Combined matrix representation of the components of the total
spin operator ES in the basis {8so

1,A1
, 8so

2,E,x , 8
so
2,E,y, 8

so
3,E,x , 8

so
3,E,y, 8

so
4,A1

, 8so
5,E,x ,

8so
5,E,y, 8

so
6,E,x , 8

so
6,E,y, 8

so
7,A2

, 8so
8,A1

, 8so
9,E,x , 8

so
9,E,y}. To obtain the matrix

representation of Ŝx , set Sx → h̄ and Sy , Sz → 0. To obtain the matrix represen-
tation of Ŝy , set Sy → h̄ and Sx , Sz → 0. To obtain the matrix representation
of Ŝz, set Sz → h̄ and Sx , Sy → 0.

0 iSy −iSx 0 0 0 0 0 0 0 0 0 0 0
−iSy 0 −iSz 0 0 0 0 0 0 0 0 0 0 0
iSx iSz 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 iSz

i
√

2
Sy

i
√

2
Sx 0 0 0 0

0 0 0 0 0 0 −iSz 0 i
√

2
Sx

i
√

2
Sy 0 0 0 0

0 0 0 0 0 0 −i
√

2
Sy

−i
√

2
Sx 0 0 −i

√
2

Sx
i

√
2

Sy 0 0

0 0 0 0 0 0 −i
√

2
Sx

−i
√

2
Sy 0 0 −i

√
2

Sy
−i
√

2
Sx 0 0

0 0 0 0 0 0 0 0 i
√

2
Sx

i
√

2
Sy 0 iSz 0 0

0 0 0 0 0 0 0 0 −i
√

2
Sy

i
√

2
Sx −iSz 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
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