21 research outputs found

    Global data set of long-term summertime vertical temperature profiles in 153 lakes

    Full text link
    peer reviewedClimate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change. © 2021, The Author(s)

    Global data set of long-term summertime vertical temperature profiles in 153 lakes

    Get PDF
    Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change

    Global data set of long-term summertime vertical temperature profiles in 153 lakes

    Get PDF
    Measurement(s) : temperature of water, temperature profile Technology Type(s) : digital curation Factor Type(s) : lake location, temporal interval Sample Characteristic - Environment : lake, reservoir Sample Characteristic - Location : global Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.14619009Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change

    Analyzing long‐term water quality of lakes in Rhode Island and the northeastern United States with an anomaly approach

    No full text
    Addressing anthropogenic impacts on aquatic ecosystems is a focus of lake management. Controlling phosphorus and nitrogen can mitigate these impacts, but determining management effectiveness requires long-term datasets. Recent analysis of the LAke multi-scaled GeOSpatial and temporal database for the Northeast (LAGOS-NE) United States found stable water quality in the northeastern and midwestern United States; however, sub-regional trends may be obscured. We used the University of Rhode Island’s Watershed Watch Volunteer Monitoring Program (URIWW) dataset to determine if there were sub-regional (i.e., 3000 km(2)) water quality trends. URIWW has collected water quality data on Rhode Island lakes and reservoirs for over 25 yr. The LAGOS-NE and URIWW datasets allowed for comparison of water quality trends at regional and sub-regional scales, respectively. We assessed regional (LAGOS-NE) and sub-regional (URIWW) trends with yearly median anomalies calculated on a per-station basis. Sub-regionally, temperature and chlorophyll a increased from 1993 to 2016. Total nitrogen, total phosphorus, and the nitrogen:phosphorus ratio (N:P) were stable. At the regional scale, the LAGOS-NE dataset showed similar trends to prior studies of the LAGOS-NE with chlorophyll a, total nitrogen, and N:P all stable over time. Total phosphorus did show a very slight increase. In short, algal biomass, as measured by chlorophyll a in Rhode Island lakes and reservoirs increased, despite stability in total nitrogen, total phosphorus, and the nitrogen to phosphorus ratio. Additionally, we demonstrated both the value of long-term monitoring programs, like URIWW, for identifying trends in environmental condition, and the utility of site-specific anomalies for analyzing for long-term water quality trends
    corecore