301 research outputs found

    The Sum over Topologies in Three-Dimensional Euclidean Quantum Gravity

    Full text link
    In Hawking's Euclidean path integral approach to quantum gravity, the partition function is computed by summing contributions from all possible topologies. The behavior such a sum can be estimated in three spacetime dimensions in the limit of small cosmological constant. The sum over topologies diverges for either sign of Λ\Lambda, but for dramatically different reasons: for Λ>0\Lambda>0, the divergent behavior comes from the contributions of very low volume, topologically complex manifolds, while for Λ<0\Lambda<0 it is a consequence of the existence of infinite sequences of relatively high volume manifolds with converging geometries. Possible implications for four-dimensional quantum gravity are discussed.Comment: 12 pages (LaTeX), UCD-92-1

    Analytic and Reidemeister torsion for representations in finite type Hilbert modules

    Full text link
    For a closed Riemannian manifold we extend the definition of analytic and Reidemeister torsion associated to an orthogonal representation of fundamental group on a Hilbert module of finite type over a finite von Neumann algebra. If the representation is of determinant class we prove, generalizing the Cheeger-M\"uller theorem, that the analytic and Reidemeister torsion are equal. In particular, this proves the conjecture that for closed Riemannian manifolds with positive Novikov-Shubin invariants, the L2 analytic and Reidemeister torsions are equal.Comment: 78 pages, AMSTe

    Entropy vs. Action in the (2+1)-Dimensional Hartle-Hawking Wave Function

    Full text link
    In most attempts to compute the Hartle-Hawking ``wave function of the universe'' in Euclidean quantum gravity, two important approximations are made: the path integral is evaluated in a saddle point approximation, and only the leading (least action) extremum is taken into account. In (2+1)-dimensional gravity with a negative cosmological constant, the second assumption is shown to lead to incorrect results: although the leading extremum gives the most important single contribution to the path integral, topologically inequivalent instantons with larger actions occur in great enough numbers to predominate. One can thus say that in 2+1 dimensions --- and possibly in 3+1 dimensions as well --- entropy dominates action in the gravitational path integral.Comment: 17 page

    Brief of Amici Curiae Scholars of the Law of Non-Profit Organizations in Support of Respondent: Americans for Prosperity Foundation v. Matthew Rodriguez, Nos. 19-251 & 19-255

    Get PDF
    This was a brief filed with the Supreme Court of the United States supporting the state of California in its effort to defend the Constitutionality of a law regarding nonprofit organizations requiring that those organizations soliciting donations in the state of California file a Schedule B of the Form 990 with the state attorney general to disclose substantial donors to the organization during the year

    Detection of 16 Gamma-Ray Pulsars Through Blind Frequency Searches Using the Fermi LAT

    Full text link
    Pulsars are rapidly-rotating, highly-magnetized neutron stars emitting radiation across the electromagnetic spectrum. Although there are more than 1800 known radio pulsars, until recently, only seven were observed to pulse in gamma rays and these were all discovered at other wavelengths. The Fermi Large Area Telescope makes it possible to pinpoint neutron stars through their gamma-ray pulsations. We report the detection of 16 gamma-ray pulsars in blind frequency searches using the LAT. Most of these pulsars are coincident with previously unidentified gamma-ray sources, and many are associated with supernova remnants. Direct detection of gamma-ray pulsars enables studies of emission mechanisms, population statistics and the energetics of pulsar wind nebulae and supernova remnants.Comment: Corresponding authors: Michael Dormody, Paul S. Ray, Pablo M. Saz Parkinson, Marcus Ziegle

    Fermi Large Area Telescope observations of the Vela-X Pulsar Wind Nebula

    Get PDF
    We report on gamma-ray observations in the off-pulse window of the Vela pulsar PSR B0833-45, using 11 months of survey data from the Fermi Large Area Telescope (LAT). This pulsar is located in the 8 degree diameter Vela supernova remnant, which contains several regions of non-thermal emission detected in the radio, X-ray and gamma-ray bands. The gamma-ray emission detected by the LAT lies within one of these regions, the 2*3 degrees area south of the pulsar known as Vela-X. The LAT flux is signicantly spatially extended with a best-fit radius of 0.88 +/- 0.12 degrees for an assumed radially symmetric uniform disk. The 200 MeV to 20 GeV LAT spectrum of this source is well described by a power-law with a spectral index of 2.41 +/- 0.09 +/- 0.15 and integral flux above 100 MeV of (4.73 +/- 0.63 +/- 1.32) * 10^{-7} cm^{-2} s^{-1}. The first errors represent the statistical error on the fit parameters, while the second ones are the systematic uncertainties. Detailed morphological and spectral analyses give strong constraints on the energetics and magnetic field of the pulsar wind nebula (PWN) system and favor a scenario with two distinct electron populations.Comment: 21 pages, 5 figures, accepted for publication in Astrophysical Journa

    Fermi LAT observations of the Geminga pulsar

    Get PDF
    We report on the \textit{Fermi}-LAT observations of the Geminga pulsar, the second brightest non-variable GeV source in the Îł\gamma-ray sky and the first example of a radio-quiet Îł\gamma-ray pulsar. The observations cover one year, from the launch of the FermiFermi satellite through 2009 June 15. A data sample of over 60,000 photons enabled us to build a timing solution based solely on Îł\gamma rays. Timing analysis shows two prominent peaks, separated by Δϕ\Delta \phi = 0.497 ±\pm 0.004 in phase, which narrow with increasing energy. Pulsed Îł\gamma rays are observed beyond 18 GeV, precluding emission below 2.7 stellar radii because of magnetic absorption. The phase-averaged spectrum was fitted with a power law with exponential cut-off of spectral index Γ\Gamma = (1.30 ±\pm 0.01 ±\pm 0.04), cut-off energy E0E_{0} = (2.46 ±\pm 0.04 ±\pm 0.17) GeV and an integral photon flux above 0.1 GeV of (4.14 ±\pm 0.02 ±\pm 0.32) ×\times 10−6^{-6} cm−2^{-2} s−1^{-1}. The first uncertainties are statistical and the second are systematic. The phase-resolved spectroscopy shows a clear evolution of the spectral parameters, with the spectral index reaching a minimum value just before the leading peak and the cut-off energy having maxima around the peaks. Phase-resolved spectroscopy reveals that pulsar emission is present at all rotational phases. The spectral shape, broad pulse profile, and maximum photon energy favor the outer magnetospheric emission scenarios.Comment: 32 pages, 12 figures, 3 tables. Accepted for publication in The Astrophysical Journal. Corresponding authors: Denis Dumora ([email protected]), Fabio Gargano ([email protected]), Massimiliano Razzano ([email protected]

    Gamma-Ray Emission Concurrent with the Nova in the Symbiotic Binary V407 Cygni

    Full text link
    Novae are thermonuclear explosions on a white dwarf surface fueled by mass accreted from a companion star. Current physical models posit that shocked expanding gas from the nova shell can produce X-ray emission but emission at higher energies has not been widely expected. Here, we report the Fermi Large Area Telescope detection of variable gamma-ray (0.1-10 GeV) emission from the recently-detected optical nova of the symbiotic star V407 Cygni. We propose that the material of the nova shell interacts with the dense ambient medium of the red giant primary, and that particles can be accelerated effectively to produce pi0 decay gamma-rays from proton-proton interactions. Emission involving inverse Compton scattering of the red giant radiation is also considered and is not ruled out.Comment: 38 pages, includes Supplementary Online Material; corresponding authors: C.C. Cheung, A.B. Hill, P. Jean, S. Razzaque, K.S. Woo

    PSR J1907+0602: A Radio-Faint Gamma-Ray Pulsar Powering a Bright TeV Pulsar Wind Nebula

    Full text link
    We present multiwavelength studies of the 106.6 ms gamma-ray pulsar PSR J1907+06 near the TeV source MGRO J1908+06. Timing observations with Fermi result in a precise position determination for the pulsar of R.A. = 19h07m547(2), decl. = +06:02:16(2) placing the pulsar firmly within the TeV source extent, suggesting the TeV source is the pulsar wind nebula of PSR J1907+0602. Pulsed gamma-ray emission is clearly visible at energies from 100 MeV to above 10 GeV. The phase-averaged power-law index in the energy range E > 0.1 GeV is = 1.76 \pm 0.05 with an exponential cutoff energy E_{c} = 3.6 \pm 0.5 GeV. We present the energy-dependent gamma-ray pulsed light curve as well as limits on off-pulse emission associated with the TeV source. We also report the detection of very faint (flux density of ~3.4 microJy) radio pulsations with the Arecibo telescope at 1.5 GHz having a dispersion measure DM = 82.1 \pm 1.1 cm^{-3}pc. This indicates a distance of 3.2 \pm 0.6 kpc and a pseudo-luminosity of L_{1400} ~ 0.035 mJy kpc^2. A Chandra ACIS observation revealed an absorbed, possibly extended, compact <(4 arcsec) X-ray source with significant non-thermal emission at R.A. = 19h07m54.76, decl. = +06:02:14.6 with a flux of 2.3^{+0.6}_{-1.4} X 10^{-14} erg cm^{-2} s^{-1}. From archival ASCA observations, we place upper limits on any arcminute scale 2--10 keV X-ray emission of ~ 1 X 10^{-13} erg cm^{-2} s^{-1}. The implied distance to the pulsar is compatible with that of the supernova remnant G40.5-0.5, located on the far side of the TeV nebula from PSR J1907+0602, and the S74 molecular cloud on the nearer side which we discuss as potential birth sites
    • 

    corecore