26 research outputs found

    Towards a better understanding of the generation of fructan structure diversity in plants: molecular and functional characterization of a sucrose:fructan 6-fructosyltransferase (6-SFT) cDNA from perennial ryegrass (Lolium perenne)

    Get PDF
    The main storage compounds in Lolium perenne are fructans with prevailing β(2-6) linkages. A cDNA library of L. perenne was screened using Poa secunda sucrose:fructan 6-fructosyltransferase (6-SFT) as a probe. A full-length Lp6-SFT clone was isolated as shown by heterologous expression in Pichia pastoris. High levels of Lp6-SFT transcription were found in the growth zone of elongating leaves and in mature leaf sheaths where fructans are synthesized. Upon fructan synthesis induction, Lp6-SFT transcription was high in mature leaf blades but with no concomitant accumulation of fructans. In vitro studies with the recombinant Lp6-SFT protein showed that both 1-kestotriose and 6G-kestotriose acted as fructosyl acceptors, producing 1- and 6-kestotetraose (bifurcose) and 6G,6-kestotetraose, respectively. Interestingly, bifurcose formation ceased and 6G,6-kestotetraose was formed instead, when recombinant fructan:fructan 6G-fructosyltransferase (6G-FFT) of L. perenne was introduced in the enzyme assay with sucrose and 1-kestotriose as substrates. The remarkable absence of bifurcose in L. perenne tissues might be explained by a higher affinity of 6G-FFT, as compared with 6-SFT, for 1-kestotriose, which is the first fructan formed. Surprisingly, recombinant 6-SFT from Hordeum vulgare, a plant devoid of fructans with internal glucosyl residues, also produced 6G,6-kestotetraose from sucrose and 6G-kestotriose. In the presence of recombinant L. perenne 6G-FFT, it produced 6G,6-kestotetraose from 1-kestotriose and sucrose, like L. perenne 6-SFT. Thus, we demonstrate that the two 6-SFTs have close catalytic properties and that the distinct fructans formed in L. perenne and H. vulgare can be explained by the presence of 6G-FFT activity in L. perenne and its absence in H. vulgar

    Does Potassium (K+) Contribute to High-Nitrate (NO3−) Weakening of a Plant’s Defense System against Necrotrophic Fungi?

    No full text
    In this opinion article, we have analyzed the relevancy of a hypothesis which is based on the idea that in Arabidopsis thaliana jasmonic acid, a (JA)-mediated defense system against necrotrophic fungi is weakened when NO3− supply is high. Such a hypothesis is based on the fact that when NO3− supply is high, it induces an increase in the amount of bioactive ABA which induces the sequestration of the phosphatase ABI2 (PP2C) into the PYR/PYL/RCAR receptor. Consequently, the Ca sensors CBL1/9-CIPK23 are not dephosphorylated by ABI2, thus remaining able to phosphorylate targets such as AtNPF6.3 and AtKAT1, which are NO3− and K+ transporters, respectively. Therefore, the impact of phosphorylation on the regulation of these two transporters, could (1) reduce NO3− influx as in its phosphorylated state AtNPF6.3 shifts to low capacity state and (2) increase K+ influx, as in its phosphorylated state KAT1 becomes more active. It is also well known that in roots, K+ loading in the xylem and its transport to the shoot is activated in the presence of NO3−. As such, the enrichment of plant tissues in K+ can impair a jasmonic acid (JA) regulatory pathway and the induction of the corresponding biomarkers. The latter are known to be up-regulated under K+ deficiency and inhibited when K+ is resupplied. We therefore suggest that increased K+ uptake and tissue content induced by high NO3− supply modifies the JA regulatory pathway, resulting in a weakened JA-mediated plant’s defense system against necrotrophic fungi

    Hexokinase-dependent sugar signaling represses fructan exohydrolase activity in Lolium perenne

    Get PDF
    Article de revue (Article scientifique dans une revue à comité de lecture)International audienceDefoliation of perennial ryegrass (Lolium perenne L.) by grazing animals leads to fructan mobilisation via an increase of fructan exohydrolase (FEH) activity. To highlight the regulation of fructan metabolism in perennial ryegrass, the role of sugars as signalling molecules for regulation of FEH activity after defoliation was evaluated. We used an original approach in planta by spraying stubble of defoliated plants (sugar starved plants) during 24&nbsp;h with metabolisable sugars (glucose, fructose, sucrose) and sugar analogues (3-O-methylglucose, mannose, lactulose, turanose, palatinose). Metabolisable sugar (glucose, fructose, sucrose) supply following defoliation led to the repression of FEH activity increase. The supply of mannose, which is phosphorylated by hexokinase but not further metabolisable, led to the same repressive effect, whereas 3-O-methylglucose, which is not a substrate for hexokinase, had no effect. These results indicate that hexoses could be sensed by hexokinase, triggering a chain of events leading to the repression of FEH activity. By contrast, it was not possible to determine the role of sucrose as a signal since the supply of sucrose analogues (lactulose, turanose and palatinose) enhanced internal hexose content.</p

    Ascorbate–glutathione pathways mediated by cytokinin regulate H2O2 levels in light-controlled rose bud burst

    No full text
    International audienceAbstract Rosebush (Rosa “Radrazz”) plants are an excellent model to study light control of bud outgrowth since bud outgrowth only arises in the presence of light and never occurs in darkness. Recently, we demonstrated high levels of hydrogen peroxide (H2O2) present in the quiescent axillary buds strongly repress the outgrowth process. In light, the outgrowing process occurred after H2O2 scavenging through the promotion of Ascorbic acid–Glutathione (AsA–GSH)-dependent pathways and the continuous decrease in H2O2 production. Here we showed Respiratory Burst Oxidase Homologs expression decreased in buds during the outgrowth process in light. In continuous darkness, the same decrease was observed although H2O2 remained at high levels in axillary buds, as a consequence of the strong inhibition of AsA–GSH cycle and GSH synthesis preventing the outgrowth process. Cytokinin (CK) application can evoke bud outgrowth in light as well as in continuous darkness. Furthermore, CKs are the initial targets of light in the photocontrol process. We showed CK application to cultured buds in darkness decreases bud H2O2 to a level that is similar to that observed in light. Furthermore, this treatment restores GSH levels and engages bud burst. We treated plants with buthionine sulfoximine, an inhibitor of GSH synthesis, to solve the sequence of events involving H2O2/GSH metabolisms in the photocontrol process. This treatment prevented bud burst, even in the presence of CK, suggesting the sequence of actions starts with the positive CK effect on GSH that in turn stimulates H2O2 scavenging, resulting in initiation of bud outgrowth

    Phloem Sap Composition: What Have We Learnt from Metabolomics?

    No full text
    Phloem sap transport is essential for plant nutrition and development since it mediates redistribution of nutrients, metabolites and signaling molecules. However, its biochemical composition is not so well-known because phloem sap sampling is difficult and does not always allow extensive chemical analysis. In the past years, efforts have been devoted to metabolomics analyses of phloem sap using either liquid chromatography or gas chromatography coupled with mass spectrometry. Phloem sap metabolomics is of importance to understand how metabolites can be exchanged between plant organs and how metabolite allocation may impact plant growth and development. Here, we provide an overview of our current knowledge of phloem sap metabolome and physiological information obtained therefrom. Although metabolomics analyses of phloem sap are still not numerous, they show that metabolites present in sap are not just sugars and amino acids but that many more metabolic pathways are represented. They further suggest that metabolite exchange between source and sink organs is a general phenomenon, offering opportunities for metabolic cycles at the whole-plant scale. Such cycles reflect metabolic interdependence of plant organs and shoot–root coordination of plant growth and development

    Cloning and Characterization of a Novel Fructan 6-Exohydrolase Strongly Inhibited by Sucrose in Lolium perenne

    No full text
    MAIN CONCLUSION: The first 6-fructan exohydrolase (6-FEH) cDNA from Lolium perenne was cloned and characterized. Following defoliation, Lp6 - FEHa transcript level unexpectedly decreased together with an increase in total FEH activity. Lolium perenne is a major forage grass species that accumulates fructans, mainly composed of β(2,6)-linked fructose units. Fructans are mobilized through strongly increased activities of fructan exohydrolases (FEHs), sustaining regrowth following defoliation. To understand the complex regulation of fructan breakdown in defoliated grassland species, the objective was to clone and characterize new FEH genes in L. perenne. To find FEH genes related to refoliation, a defoliated tiller base cDNA library was screened. Characterization of the recombinant protein was performed in Pichia pastoris. In this report, the cloning and enzymatic characterization of the first 6-FEH from L. perenne is described. Following defoliation, during fructan breakdown, Lp6-FEHa transcript level unexpectedly decreased in elongating leaf bases (ELB) and in mature leaf sheaths (tiller base) in parallel to increased total FEH activities. In comparison, transcript levels of genes coding for fructosyltransferases (FTs) involved in fructan biosynthesis also decreased after defoliation but much faster than FEH transcript levels. Since Lp6-FEHa was strongly inhibited by sucrose, mechanisms modulating FEH activities are discussed. It is proposed that differences in the regulation of FEH activity among forage grasses influence their tolerance to defoliation.status: publishe

    The Key Role of Glutamate Dehydrogenase 2 (GDH2) in the Control of Kernel Production in Maize ( Zea mays L.)

    No full text
    The agronomic potential of glutamate dehydrogenase 2 (GDH2) in maize kernel production was investigated by examining the impact of a mutation on the corresponding gene. Mu-insertion homozygous and heterozygous mutant lines lacking GDH2 activity were isolated and characterized at the biochemical, physiological and agronomic levels. In comparison to the wild type and to the homozygous ghd2 mutants, the heterozygous gdh2 mutant plants were characterized by a decrease in the root amino acid content, whereas in the leaves an increase of a number of phenolic compounds was observed. On average, a 30 to 40% increase in kernel yield was obtained only in the heterozygous gdh2 mutant lines when plants were grown in the field over two years. The importance of GDH2 in the control of plant productivity is discussed in relation to the physiological impact of the mutation on amino acid content, with primary carbon metabolism mostly occurring in the roots and secondary metabolism occurring in the leaves
    corecore