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Abstract

The main storage compounds in Lolium perenne are fructans with prevailing b(2–6) linkages. A cDNA library of

L. perenne was screened using Poa secunda sucrose:fructan 6-fructosyltransferase (6-SFT) as a probe. A full-length

Lp6-SFT clone was isolated as shown by heterologous expression in Pichia pastoris. High levels of Lp6-SFT

transcription were found in the growth zone of elongating leaves and in mature leaf sheaths where fructans are

synthesized. Upon fructan synthesis induction, Lp6-SFT transcription was high in mature leaf blades but with no
concomitant accumulation of fructans. In vitro studies with the recombinant Lp6-SFT protein showed that both

1-kestotriose and 6G-kestotriose acted as fructosyl acceptors, producing 1- and 6-kestotetraose (bifurcose) and

6G,6-kestotetraose, respectively. Interestingly, bifurcose formation ceased and 6G,6-kestotetraose was formed

instead, when recombinant fructan:fructan 6G-fructosyltransferase (6G-FFT) of L. perenne was introduced in

the enzyme assay with sucrose and 1-kestotriose as substrates. The remarkable absence of bifurcose in L. perenne

tissues might be explained by a higher affinity of 6G-FFT, as compared with 6-SFT, for 1-kestotriose, which is the

first fructan formed. Surprisingly, recombinant 6-SFT from Hordeum vulgare, a plant devoid of fructans with internal

glucosyl residues, also produced 6G,6-kestotetraose from sucrose and 6G-kestotriose. In the presence of
recombinant L. perenne 6G-FFT, it produced 6G,6-kestotetraose from 1-kestotriose and sucrose, like L. perenne

6-SFT. Thus, we demonstrate that the two 6-SFTs have close catalytic properties and that the distinct fructans

formed in L. perenne and H. vulgare can be explained by the presence of 6G-FFT activity in L. perenne and its

absence in H. vulgare.
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Introduction

Perennial ryegrass (Lolium perenne L.) is the predominant

forage grass in European agriculture, where it provides the

major supply of nutrients for grazing sheep and cattle. The

primary source of readily available energy in this forage is

water-soluble carbohydrates (WSC) composed of glucose,

fructose, sucrose and fructans (fructosyl polymers) (Smith

et al., 1998). Perennial ryegrass accumulates large amounts

of fructans in the tiller base comprising leaf sheaths and

elongating leaf bases (Marx et al., 1997; Morvan-Bertrand

et al., 2001). Apart from their role as storage carbohydrates

used for leaf regrowth (Yamamoto and Mino, 1989;

Morvan-Bertrand et al., 2001) or for early spring growth

(Pollock and Jones, 1979), fructans are believed to confer

cold and drought tolerance (Hendry and Wallace, 1993;

Pilon-Smits et al., 1995; De Roover et al., 2000; Amiard

et al., 2003; Hisano et al., 2008; Kawakami et al., 2008),

possibly by protecting membranes under such stressful

conditions (Demel et al., 1998; Livingston and Henson,

1998; Hincha et al., 2000; Vereyken et al., 2003). For

humans, fructans are one of the most promising ingredients

for functional foods since they act as prebiotics (Rao, 1999)

and have favourable effects in the prevention of cardiovas-

cular diseases, colon cancer, and osteoporosis (Kaur and

Gupta, 2002). Furthermore, the chemical and pharmaceutical

industries have a growing interest in exploiting the benefits of

fructans (Roberfroid, 1999; Ritsema and Smeekens, 2003).

Potential applications include encapsulation for the controlled

release of drugs (Poulain et al., 2003), emulsifiers in cosmetics,

and additives in the textile and paper industry (Stevens et al.,

2001).

Fructans are sucrose-derived fructose polymers found

in ;15% of flowering plant species (Hendry and Wallace,

1993). Fructans from different sources exhibit different

degrees of polymerization (DP) and different linkages

between adjacent fructose residues. In L. perenne, fructans

of DP<8 have been well characterized and belong essen-

tially to three series: (i) the inulin series with a terminal

glucose residue and b(2–1)-linked fructose residues, (ii) the

inulin neoseries with an internal glucose residue and b(2–1)-
linked fructose residues, and (iii) the levan neoseries with an

internal glucose residue and b(2–6)-linked fructose residues.

High DP fructans (DP>8) comprised 75% of the fructan

molecules with an internal glucose residue and there were 70

times more b(2–6)-linked fructose residues than b(2–1)-
linked ones (Pavis et al., 2001a). Based on the L. perenne

fructan profile and on known properties of fructosyltrans-

ferases (FTs) involved in fructan synthesis in plants, it has

been proposed that at least four enzyme activities are required

to produce the complement of fructans in this species:

a sucrose:sucrose 1-fructosyltransferase (1-SST), a fructan:-

fructan 1-fructosyltransferase (1-FFT), a fructan:fructan 6G-

fructosyltransferase (6G-FFT), and a 6-fructosyltransferase

(6-FT) (Pavis et al., 2001b). The cloning of two cDNAs in

perennial ryegrass corresponding to FTs and the study

of their corresponding enzymatic properties have allowed

a better definition of the fructan synthesis model occurring in

this species. A 1-SST catalyses the initial step producing

1-kestotriose from two molecules of sucrose (Chalmers et al.,

2003). In the second step, a 6G-FFT produces 6G-kestotriose,

using 1-kestotriose as fructosyl donor and sucrose as fructosyl

acceptor (Lasseur et al., 2006). In further steps, higher
polymeric fructans would be synthesized by a 1-FFT activity

through b(2–1)-linked chain elongation or by a 6-FT activity

through b(2–6)-linked chain elongation. It has been demon-

strated recently that the 6G-FFT isolated from L. perenne

also had 1-FFT activity so that there might be no need for

a separate 1-FFT protein (Lasseur et al., 2006). The only

known protein that synthesizes b(2–6) linkages between two

fructosyl residues in plants is the 6-SFT enzyme described in
barley (Duchateau et al., 1995; Sprenger et al., 1995) and in

wheat (Kawakami and Yoshida, 2002). In both these species,

which are devoid of fructans with an internal glucosyl residue,

the main product of 6-SFT is 1 and 6-kestotetraose (bifur-

cose), a DP4 branched fructan. In Lolium species, however,

because of the notable absence of bifurcose, the presence of

another transferase, a fructan:fructan 6-fructosyltransferase

(6-FFT), was postulated (Pavis et al., 2001a, b).
The aims of this study were (i) to identify the enzyme

responsible for the biosynthesis of b(2–6) linkages in

L. perenne fructans, (ii) to assess its enzymatic properties,

and (iii) to study its regulation at the transcriptional level.

To this purpose, a cDNA clone encoding 6-SFT from

L. perenne stubble, composed of elongating leaf bases and

mature leaf sheaths, was isolated and characterized by

heterologous expression in Pichia pastoris. The enzymatic
properties of the recombinant protein were examined and

compared with the properties of recombinant barley 6-SFT,

an enzyme that has been studied extensively in the past

(Duchateau et al., 1995; Sprenger et al., 1995; Hochstrasser

et al., 1998). Finally, expression of the Lp6-SFT gene was

studied in leaf tissues of L. perenne leaves depending on

developmental stage and carbohydrate status.

Materials and methods

Plant material

Seeds of L. perenne cv. Bravo were germinated in 9-l pots and
grown hydroponically for 8 weeks on a nutrient solution as
previously described by Prud’homme et al. (1992). The nutrient
solution was aerated continuously and replaced every week.
Plants were grown in a greenhouse with day/night temperatures of
22/18 �C and a photoperiod of 16 h of natural light supplemented
by a photosynthetic photon flux density of 110 lmol photons
m�2 s�1 (Phyto tubes, Claude, GTE, Puteaux, France).
After 8 weeks of growth, plants were harvested. Based on the

presence of the ligule, mature leaves were separated from
elongating leaves. Sheaths and elongating leaf bases previously
enclosed by the sheaths were dissected longitudinally into five
segments (four 10-mm-long segments, 0–40 mm from the leaf base,
and a fifth variable length segment of ;40 mm). Blades and the
emerged part of elongating leaves were divided into three equal
parts (Fig. 8).
Synthesis of fructan was induced in the plants 8 weeks after

sowing, according to the method used by Smouter and Simpson
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(1991). Plants were maintained under continuous light with
a photosynthetic photon flux density of 150 lmol photons m�2 s�1

for up to 72 h, with roots and shoot meristems in the nutrient
solution cooled at 4 �C. Control swards were grown under the
original plant growth conditions, with a daylength of 16 h.
Plants were divided into three parts: sheaths of mature leaves,

blades of mature leaves together with emerged parts of elongating
leaves, and elongating leaf bases.
Each batch of sampling was done in triplicate. One part of the

harvested tissues was used immediately for enzyme extraction
whereas the remainder was frozen, stored at –80 �C for RNA
extraction, or freeze-dried for soluble carbohydrate extraction.

Preparation and screening of a cDNA library of L. perenne

Leaf sheaths and elongating leaf bases (1.5 g fresh weight) of
8-week-old plants treated to accumulate fructans (Smouter and
Simpson, 1991) were ground in liquid nitrogen. The powder
obtained was used to purify poly(A+) RNA with Dynabeads oligo
(dT)25 kit (Dynal, France) following the manufacturer’s recom-
mendation. Double-stranded cDNA was synthesized from
poly(A+) RNA and a cDNA library was constructed using
a Lambda-Zap cDNA library kit and the Gigapack III Gold
Cloning Kit (Stratagene, France). The cDNA library was screened
with a fragment of 621 bp of Poa secunda 6-SFT (Wei and
Chatterton, 2000). This fragment was labelled with [a-32P]dCTP
using the random priming method with NEBlot kit (Biolabs,
France). Membranes were hybridized overnight at 42 �C and
washed twice in 23SSC, 0.5% SDS for 15 min at room
temperature, then rinsed twice in the same buffer at 56� C. After
three rounds of purification, positive clones were excised and
recircularized in a pBluescript vector (Stratagene, USA). Sequenc-
ing of positive clones was done by Genome Express (Meylan,
France). Nucleotide sequences were compared with sequences
available in the NCBI Databank.

Expression of isolated cDNA in P. pastoris

The putative coding region of mature Lp6-SFT [determined by
sequence homology with the N- terminal sequence of the native 6-
SFT of barley (Sprenger et al., 1995)] was amplified by PCR with
the primers PIC6SFT-F (5#-GTCCGGAATTCGCCGGAGGGT-
TCCCGTGG AGCAAC-3#) and PIC6SFT-R (5#-GACGCTCTA-
GACTATGAGTCCTTAACCATGACGGT-3#). EcoRI and XbaI
sites are indicated in bold in the primers. PCR was performed with
Pfu Proofreading Polymerase (Promega, France). PCR conditions
were: 1 min at 95 �C; 5 cycles of 30 s at 95 �C, 30 s at 56 �C, 4 min
at 72 �C followed by 30 cycles of 30 s at 95 �C, 30 s at 68 �C, 4 min
at 72 �C; final extension for 5 min at 72 �C. PCR products and
pPICZaA (expression vector) were digested with restriction
enzymes corresponding to restriction sites introduced by PCR and
purified with Nucleospin Extract Kit (Macherey-Nagel, Germany).
The digested vector was dephosphorylated with CIAP (Stratagene,
USA), and then PCR products were cloned in-frame behind the
a-factor signal of the pPICZaA vector. The plasmids were trans-
formed into Escherichia coli competent cells as described (Van den
Ende et al., 2001). Cells were plated on 23YT medium supple-
mented with zeocine (Invitrogen, The Netherlands) as a selection
marker. Positive clones were used for vector amplification.
P. pastoris wild-type strain X33 was transformed by electro-
poration with 20 lg of SacI-linearized pPICZaA-Lp6GFFT.
Transformants were selected on YPDS/Zeocine plates.
In order to produce recombinant Lp6-SFT enzyme for charac-

terization, a 90-ml preculture medium (BMGY) was inoculated
with a single colony and incubated overnight at 30 �C, 200 rpm.
Cells were harvested by centrifugation (10 min, 1000 g), resus-
pended in 20 ml of induction medium (BMMY) and incubated for
4 d at 29 �C. Methanol was replenished every day to a final
concentration of 2%. After incubation, the cells were harvested by
centrifugation (10 min, 1000 g) and the pellet (containing the

recombinant enzyme) was used for enzyme assays (Ritsema et al.,
2006). Indeed, results obtained from the supernatant showed weak
FT activity, suggesting that the major part of the enzyme was
bound to the fungal cell wall.
To produce recombinant Hv6-SFT, P. pastoris strain X-33

transformed with barley 6-SFT cDNA was used (Hochstrasser
et al., 1998). Induction of protein expression was performed as
described above, except that after incubation in BMMY, protein
purification was carried out by following the protocol described by
De Coninck et al. (2005).

Characterization of the P. pastoris expressed recombinant Lp6-

SFT and Hv6-SFT

Sodium azide 0.02% (w/v) was added to all buffers to prevent
microbial growth. Cell pellet aliquots (;25 ll) containing recombi-
nant Lp6-SFT or cell supernatant aliquots (;25 ll) containing
Hv6-SFT enzymes were incubated with substrates for different
time intervals at 30 �C. All substrates were used at a final
concentration of 200 mM. Reaction mixtures containing the
recombinant Lp6-SFT or Hv6-SFT and different amount of the
recombinant 6G-FFT/1-FFT from L. perenne (Lasseur et al., 2006)
were incubated for 3 h at 30 �C. Reactions were stopped by
heating for 2 min at 95 �C.
Carbohydrates of the assay mixture were analysed by high-

performance anion exchange chromatography and pulsed ampero-
metric detection (HPAEC-PAD ICS-3000; Dionex, Sunnyvale,
CA, USA) equipped with a CarboPac PA100 anion-exchange
column (43250 mm). The solutions used were: A (90 mM NaOH)
and B (90 mM NaOH and 500 mM NaOAc). The running profile
applied to the reaction mixture containing sucrose and 6G-
kestotriose was: T¼–4 min, 100% A; T¼0 min (injection), 100%
A; T¼10 min, 98% A, 2% B; T¼20 min, 80% A, 20% B; T¼20.1
min, 100% B; T¼24 min 100% B; T¼24.1 min, 100% A; T¼27 min,
100% A. The running profile applied to the other reaction mixtures
was: T¼0, 100% A; T¼6 min, 98% A, 2% B; T¼16 min, 80% A,
20% B; T¼26 min, 65% A, 35% B; T¼26.1 min, 100% B; T¼31
min 100% B; T¼31.1 min, 100% A; T¼36 min, 100% A. Peaks
were identified by comparison with known wheat carbohydrates
and with a standard solution composed of commercial fructans
(1-kestotriose, 1,1-kestotetraose; Megazyme, Ireland) and purified
fructans (6-kestotriose, 6G,6-kestotetraose, 6G,1-kestotetraose;
kind gifts of N. Shiomi, N.J. Chatterton and D.P. Livingston).
6G-Kestotriose was purified by HPLC Sugar-Pak from the super-
natant of the yeast Xanthophyllomyces dendrorhous (Kritzinger
et al., 2003).

RNA isolation and RT-PCR analysis

Plant tissues were ground in liquid nitrogen and suspended in
a pre-warmed (80 �C) solution consisting of 750 ll of phenol and
750 ll of extraction buffer [0.1 M LiCl, 100 mM Tris–HCl, 10 mM
EDTA, 1% (w/v) SDS, pH 8.0]. After shaking, 750 ll of
chloroform–isoamylalcohol (24:1) were added and the solution
was centrifuged for 5 min (4 �C) at 20 000 g. Total RNA was
precipitated with LiCl (final concentration 2 M) overnight at 4 �C.
Following centrifugation for 30 min (4 �C) at 20 000 g, the pellet
was suspended in 250 ll of water treated with diethylpyrocarbon-
ate (0.1%, v/v) and 250 ll of phenol–chloroform–isoamylalcohol
(25:24:1), mixed, and centrifuged for 5 min. RNA in the
supernatant was precipitated again with 1 ml of absolute ethanol
and 50 ll of Na-acetate buffer (3 M; pH 5.6) and stored for 1 h at
–80 �C. After centrifugation for 20 min (4 �C) at 20 000 g, the
pellet was resuspended in 100 ll of RNase-free water. Then,
samples were treated following the Clean-up protocol of the
RNeasy Minikit (Quiagen) coupled to a DNase treatment
(RNase-free DNase; Qiagen, France).
One microgram was used for retrotranscription using the i-script

cDNA synthesis kit (Bio-Rad, France). cDNA was then ampli-
fied by PCR using 5#-CAGCTTCTGCAACGACGA-3# and
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5#-CCTTAACCATGACGGTCTCG-3# as specific primers for
Lp6-SFT, 5#-CGGATAACCGTAGTAATTCTAG-3# and 5#-GT-
ACTCATTCC AATTACCAGAC-3# as primers for 18S rRNA.
Amplification was achieved in the following conditions so that for
each cDNA, products were analysed during the exponential phase
of the PCR curve: 5 min at 94 �C; 30 cycles (Lp6-SFT) or 13 cycles
(18S rRNA) of denaturation at 94 �C for 30 s, annealing at 60 �C
for 30 s, and elongation at 72 �C for 1 min, and a final elongation
at 72 �C for 7 min. PCR products were analysed by agarose gel
electrophoresis. Three RNA extractions were performed corre-
sponding to three biological repetitions. Each PCR was performed
twice. Typical results are shown. The specificity of 6-SFT
amplification was checked by sequencing the PCR product and by
monitoring the dissociation curve on several samples in real time-
PCR using the Chromo 4 System (Bio-Rad, France).

Results

Molecular characterization of L. perenne
fructosyltransferase

A perennial ryegrass cDNA library, prepared from stubble

of plants induced to accumulate fructan-related enzymes,

was screened with a 32P-labelled insert of the P. secunda

6-SFT (Wei and Chatterton, 2000). After repeated screen-

ings, several positive clones were picked up. The longest

cDNA was fully sequenced and consisted of 2359 bp,
containing an open reading frame (ORF) of 1872 bp and

a poly(A) sequence at its 3# end. The ORF encoded

a polypeptide of 623 amino acids (Lp6-SFT, Fig. 1) with

seven potential N-glycosylation sites, a calculated pI of

5.32, and an estimated molecular weight of 60.9 kDa for the

mature protein. The cDNA was first termed ‘putative 6-FT ’

(Lasseur et al., 2002, accession no. AF494041) because of its

high identity (70–72%) with the 6-SFT polypeptides of
P. secunda, wheat, and barley (Fig. 1). It shares 100%

identity with an FT cloned later in perennial ryegrass and

called FTb (Fig. 2) (Gadegaard et al., 2008). However, the

functionality of the corresponding protein has not been

checked by expressing the cDNA in a heterologous system.

The cDNA shows 97% identity at the amino acid level

with a sequence isolated from Lolium temulentum identified

as a ‘putative fructan 6-fructosyltransferase’ (Lt6-FT,
Gallagher et al., 2004) in reference to the present Lp6-SFT.

It also shares 99% identity at the amino-acid level (621/623

amino acids) with a cDNA called ‘putative fructosyltrans-

ferase 1’ (prft1) described in Hisano et al. (2008) and called

previously Lp1-FFT in Chalmers et al. (2005) (Fig. 1). The

newly cloned cDNA shares 63% and 62% identity with the

deduced amino acid sequence of L. perenne 1-SST

(Chalmers et al., 2003) and 6G-FFT/1-FFT (Lasseur et al.,
2006) as well as 64% and 66% identity with two other

putative invertases or FTs of L. perenne, LpFT1 (Lidgett

et al., 2002), and LpFT4 (Chalmers et al., 2005), respec-

tively. LpFT1 harbours the WMNDPNG motif and then

would correspond to an invertase according to the work

realized by Ritsema et al. (2006) and Lasseur et al. (2009)

whereas LpFT4 does not harbour this motif and then would

be a fructosyltransferase.

When compared with other FTs and invertases, the newly

cloned cDNA had greater identity with sequences from

liliaceous (monocot) plants (51–56%) than with sequences

for 1-SSTs, 1-FFTs, and invertases from asteraceous (dicot)

plants (45–49%) (Fig. 2). Furthermore, the cDNA showed

greater homology with vacuolar-type than with cell-wall-

type invertases. It contains the SDPNG region and the

conserved domains of Glycoside Hydrolase Family 32.

Expression of recombinant protein in P. pastoris:
comparison with the recombinant 6-SFT of Hordeum
vulgare

The cDNA was expressed in P. pastoris to investigate the

enzymatic properties of the corresponding protein.

FT activity was first tested in the culture medium

(supernatant) where the recombinant protein was expected

to be produced (Hochstrasser et al., 1998 and references

therein). Incubation of the recombinant protein with only

sucrose (200 mM) led to the synthesis of 6-kestotriose,

product of a sucrose:sucrose 6-fructosyltransferase (6-SST)
activity, and to the release of fructose, product of invertase

activity (data not shown). However, fructan production was

very low and not stable, so that FT was further assessed in

the pellet containing the transformed yeast cells, where FT

activity has been shown to be retained sometimes (Ritsema

et al., 2006). It has to be kept in mind, however, that this

condition does not allow the complete release of glucose

and fructose produced during fructan metabolism [SFT,
fructan exohydrolase (FEH) activities] or sucrose degrada-

tion (invertase activity), in the incubation medium since

hexoses can be used by the yeast cells.

Again, incubation of the recombinant protein with

sucrose alone allowed the formation of 6-kestotriose

(Fig. 3A). Therefore, sucrose acts as both a fructosyl donor

and a fructosyl acceptor. 1-Kestotriose is not a fructosyl

donor since incubation with 1-kestotriose (200 mM) alone
(Fig. 3B) did not lead to the synthesis of a 6-linked

fructan. Instead, 1,1-kestotetraose (nystose) was produced

(1-FFT activity) together with sucrose and fructose [fructan

1-exohydrolase (1-FEH) activity]. Sucrose is not the only

fructosyl acceptor. Indeed, incubation with sucrose and

1-kestotriose led to the synthesis of 1 and 6-kestotetraose

(bifurcose), the first fructan of the mixed series found in

wheat and barley (Fig. 3C). However, it has to be kept in
mind that neither this fructan nor the subsequent mixed

series is found in vivo in the tissues of L. perenne (Pavis

et al., 2001a, b). Instead, L. perenne plants produce

a majority of levan neoseries built on the 6G-kestotriose

backbone (Pavis et al., 2001a, b). 6G-kestotriose could

then represent an ideal acceptor of fructosyl residues.

Indeed, incubation with both sucrose and 6G-kestotriose

allowed the synthesis of 6G,6-kestotetraose (Fig. 3D).
Consequently, the recombinant protein of L. perenne is able

to synthesize at least two fructans with b(2–6) linkages

[1 and 6-kestotetraose (bifurcose) and 6G,6-kestotetraose].

1-Kestotriose and 6G-kestotriose represent two potential

fructan acceptors of fructosyl residues for Lp6-SFT. Since
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sucrose is the fructosyl donor but not the sole fructosyl

acceptor, the putative 6-FT of L. perenne corresponds

therefore to a 6-SFT.

The recombinant protein led also to the production of 1-

kestotriose when incubated with sucrose alone (Fig. 3A) or

together with 6G-kestotriose (Fig. 3D), and to the pro-

duction of nystose when incubated with 1-kestotriose alone

(Fig. 3B) or together with sucrose (Fig. 3C). However, the

small amount of 1-kestotriose or nystose produced makes it

unlikely that the recombinant protein is a genuine 1-SST or

1-FFT. The recombinant protein is probably not a genuine

1-FEH either since the amount of fructose released was

Fig. 1. Comparison of the deduced amino acid sequence of fructan-synthesizing enzymes leading to b(2–6) linkages between fructose

residues including the newly cloned L. perenne 6-SFT (Lp6-SFT). Their respective accession numbers are: Lp6-SFT AF494041, Lp1-FFT

AB186920, Lt6-FT AJ532550, Ps6-SFT AF192394, Hv6-SFT X83233, Ta6-SFT AB029887. Asterisks, colons, and periods indicate

identical residues, conserved substitutions, and semiconserved substitutions, respectively. The putative start of the large subunit and of

the small subunit is indicated by an arrow. Potential glycosylation sites are underlined. The b-fructosidase motif and the cysteine catalytic

site are boxed. Inverted triangles above the sequence alignments indicate the three carboxylic acids that are crucial for enzyme catalysis

(Verhaest et al., 2005). Differences between the deduced amino acid sequences from L. perenne are indicated by circled amino acids.

Lp, L. perenne; Lt, L. temulentum; Ps, Poa secunda; Hv, H. vulgare; Ta, Triticum aestivum.

6-SFT from perennial ryegrass | 1875



small when the recombinant protein was incubated with

1-kestotriose alone (Fig. 3B).

As previously reported (Hochstrasser et al., 1998), the

recombinant 6-SFT protein of barley produced bifurcose

when incubated with both sucrose and 1-kestotriose

(Fig. 4A). However, the ability of the protein to elongate the
6G-kestotriose has never been addressed (Duchateau et al.,

1995). Despite the fact that 6G-kestotriose and levan

neoseries do not occur in barley, Hv6-SFT also produced

6G,6-kestotetraose when incubated with sucrose and 6G-

kestotriose (Fig. 4B). The discrepancy between the pattern of

fructans produced in vivo and the enzymatic characteristics

assessed in vitro might be explained in barley by the absence

of 6G-FFT activity and consequently the absence of 6G-

kestotriose. In L. perenne, the presence of 6G-FFT activity

could prevent the transfer of fructose between sucrose and

1-kestotriose by the 6-SFT activity. Indeed, when the two
recombinant 6-SFT proteins were incubated in the presence

of increasing amounts of recombinant 6G-FFT/1-FFT from

L. perenne, bifurcose ceased to be produced (Fig. 5A, B)

while it did not in controls (Fig. 5C, D) in which the

products of the enzymes incubated separately were combined

Fig. 2. Unrooted phylogenetic tree of protein sequences of some invertase and fructan metabolism genes including the newly cloned

L. perenne 6-SFT (in bold). Their respective accession numbers are: Allium cepa invertase AJ006067, A. cepa 1-SST AJ006066, A. cepa

6G-FFT AY07838, Allium sativum 1-SST AY098442, Arabidopsis thaliana invertase AY039610, A. thaliana invertase AY046009,

Asparagus officinalis invertase AF002656, A. officinalis 6G-FFT AB084283, Beta vulgaris invertase AJ277455, Brassica oleracea

invertase AF274298, B. oleracea invertase AF274299, Capsicum annuum invertase P93761, Cichorium intybus invertase AJ419971,

C. intybus 1-SST U81520, C. intybus 1-FFT U84398, Cynara scolymus 1-SST Y09662, C. scolymus 1-FFT AJ000481, Daucus carota

invertase Q42722, D. carota invertase X75352, Festuca arundinacea 1-SST AJ297369, Helianthus tuberosus 1-SST AJ009757,

H. tuberosus 1-FFT AJ009756, H. vulgare 6-SFT X83233, Ipomoea batatas invertase AF017082, I. batatas invertase AY037937,

Lycopersicon esculentum invertase P29000, L. perenne invertase AY082350, L. perenne 1-SST AY245431, L. perenne 6G-FFT

AF492836, L. perenne 6-SFT AF494041, L. perenne LpFT1 AF481763, L. perenne LpFT4 DQ073970, L. temulentum putative 6-FT

AJ532550, Oryza sativa invertase AF276703, O. sativa invertase AF276704, Phaseolus vulgaris invertase O24509, P. secunda 6-SFT

AF192394, Prunus cerasus invertase AY048579, Saccharum officinarium invertase AY302083, Taraxacum officinale 1-SST AJ250634,

T. aestivum invertase AJ635225, T. aestivum 6-SFT AB029887, T. aestivum 1-SST AB029888, Tulipa gesneriana invertase X97642,

Vicia faba invertase Q43857, Vitis vinifera invertase Q9S943, V. vinifera invertase QS944, Zea mays invertase P49175.
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afterwards at the same ratio as the enzymes. Instead,

controls showed constant amounts of 6-kestotriose and

bifurcose (Fig. 5C, D). Increasing amounts of 6G-FFT/

1-FFT products (6G-kestotriose, nystose) were barely

visible, probably because the extracts were too diluted.

Indeed, when extracts were four times concentrated, amounts

of 6G-kestotriose and nystose increased together with
increasing amounts of the 6G-FFT/1-FFT recombinant

protein (data not shown). A fourth fructan was produced.

It might be produced by 6G-FFT/1-FFT activity (1,1 and

6G-kestopentaose and/or 1 and 1,6G-kestopentaose) or by

6-SFT activity (6G,6-kestotetraose). Since it has the same

retention time as the 6G,6-kestotetraose, it might correspond

to this fructan.

Absence of bifurcose in L. perenne could arise from 6-
SFT activity inhibition by the two products of the 6G-FFT/

1-FFT activity. However, neither 6G-kestotriose (Fig. 6A)

nor nystose (Fig. 6C) decreased the production of bifurcose.

The barley 6-SFT recombinant protein shared close enzy-

matic characteristics (Fig. 6B, D). Indeed, when the two

recombinant 6-SFT proteins were incubated with sucrose and

1-kestotriose, bifurcose was produced, and when they were

incubated with sucrose, 1-kestotriose, and 6G-kestotriose,

6G,6-kestotetraose was produced (Fig. 6A, B). When they

were incubated with sucrose, 1-kestotriose, and nystose,

a fructan was produced but with a slightly different retention

time, 21.3 min, as compared with 21.5 min for 6G,6-

kestotetraose. Most likely this fructan corresponds to the 6-

and 1,1-kestopentaose, resulting from the transfer of fructose

between sucrose and nystose. If the enzymatic properties of
the two recombinant 6-SFT proteins are close, they are not

exactly the same since perennial ryegrass 6-SFT produced less

bifurcose and a higher ratio of 6G,6-kestotetraose to

bifurcose than barley 6-SFT (Fig. 6A, 6B).

Absence of bifurcose in L. perenne might also result from

a so-called bifurcosidase activity (Kawakami et al., 2005).

To test this hypothesis, proteins were extracted from

L. perenne plants in two physiological conditions in which
bifurcosidase could operate, depending on its role in vivo:

from plants accumulating fructans (if bifurcosidase partic-

ipates to fructan synthesis) or from plants degrading

fructans after defoliation (if bifurcosidase is induced after

defoliation together with other FEHs to mobilize fructans

for regrowth). Bifurcose is synthesized by wheat or barley

(Duchateau et al., 1995; Sprenger et al., 1995). After

incubation of these crude protein extracts with bifurcose

Fig. 3. High-performance anion-exchange chromatograms of the reaction products generated by the P. pastoris-expressed 6-SFT

protein from L. perenne. Reaction mixtures containing the recombinant protein were incubated for up to 8 h at 30 �C with 200 mM

sucrose (A), 200 mM 1-kestotriose (B), 200 mM sucrose and 200 mM 1-kestotriose (C), 200 mM sucrose and 200 mM 6G-kestotriose

(D). G: glucose; F: fructose; S: sucrose; Bif: bifurcose (1 and 6-kestotetraose); 1-K: 1-kestotriose; 6G-K: 6G-kestotriose; 6-K:

6-kestotriose; Nys: nystose (1,1-kestotetraose); 4: 6G,1-kestotetraose; 5: 1,1,1-kestopentaose. The elution pattern of wheat saccharides

is presented in (C).
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extracted from wheat, bifurcose was not degraded (data

not shown). So a ‘bifurcosidase’ does not seem to operate in

L. perenne.

Effect of leaf developmental stage on gene expression
pattern of Lp6-SFT

Leaf growth in grasses is confined to the basal region, which

is enclosed by the sheaths of mature leaves (Schnyder et al.,

1990). Cells are displaced away from their origin as a result
of continued production and elongation of new cells. The

tissue that emerges from the enclosing leaf sheaths is almost

fully differentiated and photosynthetically active (Wilhelm

and Nelson, 1978). In order to follow the transcription of

Lp6-SFT in these tissues, four 1-cm long segments and

a fifth longer segment were cut, starting from the base of

growing leaves and leaf sheaths. Leaf blades and emerged

parts of growing leaves were divided into three parts of
equal length (Fig. 7). From each segment, carbohydrates,

proteins, and total RNA were extracted. Results obtained

for sucrose, fructans, 1-SST, and 6G-FFT activities together

with the corresponding transcripts have been reported

previously in Lasseur et al. (2006). 6-SFT activity has

not been followed because its specific substrate, the 6G-

kestotriose, is not commercially available. A 311-bp frag-

ment of Lp6-SFT cDNA was amplified by RT-PCR from
the same samples. In elongating leaves, the transcript level

of Lp6-SFT was highest in the basal segment (Fig. 7) mainly

composed of dividing cells, where the accumulation of

fructan and sucrose was maximal and where activity of 1-

SST and 6G-FFT was greatest (Lasseur et al., 2006). In

mature leaf sheaths, Lp6-SFT was expressed in the three

first segments (Fig. 7) concomitant with fructan synthesis

(Lasseur et al., 2006). Together with fructan levels and FT

enzyme activities, Lp6-SFT transcription dropped subse-

quently along the axis of leaf sheaths and of enclosed parts

of elongating leaves, so that they became barely or no

longer detectable in the fifth segment of each tissue (Fig. 7).

In photosynthetically active tissues, fructans were present in
lower amounts than in sink tissues (Lasseur et al., 2006).

Lp6-SFT mRNA fragments were not detected in mature leaf

blades. Surprisingly, they were amplified in the last segment

of the emerged part of the elongating leaves (Fig. 7).

Transcript levels of Lp6-SFT upon induction of fructan
accumulation in leaves

Accumulation of large quantities of fructans can be induced

in leaves of grasses by cooling the roots and continuous
illumination of the shoots (Smouter and Simpson, 1991;

Guerrand et al., 1996; Pavis et al., 2001a, Wei et al., 2001,

Lasseur et al., 2006). After several time intervals, shoots

were harvested and dissected into leaf blades, leaf sheaths,

and elongating leaf bases. Fructans started to accumulate in

elongating leaf bases and in leaf sheaths 6 h after the

beginning of the treatment while in leaf blades, fructans

increased later and only slightly (Lasseur et al., 2006). Lp6-
SFT cDNA was amplified by RT-PCR from these same

samples. Lp6-SFT transcription level increased in elongat-

ing leaf bases and in leaf sheaths upon induction of fructan

accumulation (Fig. 8), following the curve of fructan levels

(Lasseur et al., 2006). Surprisingly, Lp6-SFT transcripts,

Fig. 4. High performance anion-exchange chromatograms of the reaction products generated by the P. pastoris-expressed 6-SFT

protein from H. vulgare. Reaction mixtures containing the recombinant protein were incubated for up to 8 h at 30 �C with 200 mM

sucrose and 200 mM 1-kestotriose (A), 200 mM sucrose and 200 mM 6G-kestotriose (B). G: glucose; F: fructose; S: sucrose; Bif:

bifurcose (1 and 6-kestotetraose); 1-K: 1-kestotriose; 6G-K: 6G-kestotriose; 6-K: 6-kestotriose; Nys: nystose (1,1-kestotetraose);

4: 6G,1-kestotetraose; 5: 1,1,1-kestopentaose. The elution pattern of wheat saccharides is presented in (A).
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which were not detected in leaf blades of control plants,

became strongly induced in leaf blades of illuminated plants

at between 6 h and 24 h of treatment while the fructan level

slightly increased after 48 h (Lasseur et al., 2006).

Discussion

Lp6-SFT and Hv6-SFT, two similar enzymes but
different fructan patterns in planta

Fructosyl residues in fructans of Lolium species are pre-

dominantly b(2–6) linked (Tomasic et al., 1978; Sims et al.,

1992; Bonnett et al., 1994; St John et al., 1997; Pavis et al.,

2001a). In this paper, we describe for the first time the

isolation and the functional characterization of a fructosyl-

transferase able to produce b(2–6) linkages in Lolium

species.

The cDNA was first termed ‘putative 6-FT ’ (Lasseur

et al., 2002, accession no. AF494041) because of its high

identity (74%) to the 6-SFT polypeptide of P. secunda. It

shares 99% identity with prft1 described by Hisano et al.

(2008). In Chalmers et al. (2005), the corresponding protein

was described as an Lp1-FFT. However, the functionality

of the corresponding protein could not be deeply assessed

because of troubles with activity when expressing the cDNA

in P. pastoris (Hisano et al., 2008). The two amino acids
that differ between the two cDNAs (Fig. 1) are not located

in the mature protein if we assume that the mature protein

begins at the same position as for the 6-SFT of barley

[AGGFPW motif; Sprenger et al., 1995)] (Fig. 1). So it can

be concluded that the two cDNAs (Lp6-SFT and Lp1-FFT)

correspond to the same protein. Differences between the

cDNAs could be attributed to the fact that they have been

cloned from different varieties (variety Bravo in this study
compared with variety Aberystwyth in Hisano et al., 2008).

Gallagher et al. (2006) cloned a genomic DNA in perennial

ryegrass corresponding to a ‘6-SFT like’ (Lp6-S/F-FT), and

found that the corresponding cDNA shared 99% identity

(621/624 amino acids) with the cDNA cloned in this work.

Amongst the three amino acids that differed, two are not

present in the mature protein. Again, we can assume that

this cDNA and the newly cloned cDNA correspond to the
same protein. In their study, Hisano et al. (2008) cloned two

Fig. 5. High-performance anion-exchange chromatograms of the reaction products generated by the P. pastoris-expressed 6-SFT

protein from L. perenne (A) or from H. vulgare (B) with different amounts of recombinant 6G-FFT/1-FFT (0–100% of the incubation buffer

added) from L. perenne (Lasseur et al., 2006). Reaction mixtures were incubated for 8 h at 30 �C with 200 mM sucrose and 200 mM

1-kestotriose. For comparison, each recombinant enzyme has been run independently and the products of the reactions have been

mixed in the same proportions as the corresponding enzymes (C: Lp6-SFT, D: Hv6-SFT). G: glucose; F: fructose; S: sucrose; Bif:

bifurcose (1 and 6-kestotetraose); 1-K, 1-kestotriose; 6G-K, 6G-kestotriose; 6-K: 6-kestotriose; Nys: nystose (1,1-kestotetraose); 4:

6G,1-kestotetraose; 6G,6-K: 6G,6-kestotetraose.
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other ‘6-SFT-like’ cDNAs called ‘putative fructosyltransfer-

ase 2’ (prft2) and ‘putative fructosyltransferase 6’ (prft6)

sharing, respectively, 95% (599/624 amino acids) and 96%

(602/624 amino acids) identity with prft1. Given the very

high identity between these three cDNAs (prft1, prft2, and

prft6), the authors assumed that some of these genes may be

allelic.

When expressed in P. pastoris, the recombinant protein
corresponding to the newly cloned cDNA demonstrated a 6-

SFT activity. Indeed, this protein is able to use sucrose as

fructosyl donor and both 1-kestotriose and 6G-kestotriose as

fructosyl acceptors, producing respectively bifurcose and

6G,6-kestotetraose. Therefore, in perennial ryegrass, there is

no need for a different enzyme such as a 6-FFT to produce

the b2,6-fructosyl linkages. The main product of the

recombinant 6-SFT protein from barley in the presence of
sucrose and 6G-kestotriose is also the 6G,6-kestotetraose,

despite the absence of fructans with internal glucosyl residues

in this plant. Thus, the catalytic properties of L. perenne 6-

SFT resemble those of 6-SFT from barley. When incubated

with sucrose and 1-kestotriose, both enzymes produced

bifurcose. When incubated with sucrose and 6G-kestotriose,

both enzymes produced 6G,6-kestotetraose. In addition,

both enzymes have invertase activity and both enzymes are

not inhibited by 6G-kestotriose and nystose. We demonstrate

therefore that 6-SFT of L. perenne and H. vulgare have close
enzymatic characteristics, so that the specificity of the

fructans produced in the two species depends on the 6G-

FFT/1-FFT activity, present in L. perenne and absent in

H. vulgare.

In Lolium species, bifurcose has neither been found in

shoot tissues, nor been produced by incubation of protein

crude extract with sucrose and 1-kestotriose (Pavis et al.,

2001a, b). According to the present data, bifurcose is not
produced by the 6-SFT activity when the 6G-FFT/1-FFT

activity operates in vitro. Absence of bifurcose did not result

Fig. 6. High-performance anion-exchange chromatograms of the reaction products generated by the P. pastoris-expressed 6-SFT

protein from L. perenne (A, C) or from H. vulgare (B, D). Reaction mixtures containing the recombinant protein were incubated for

8 h at 30 �C with 200 mM sucrose and up to 200 mM 6G-kestotriose (A, B) or nystose (C, D). G: glucose; F: fructose; S: sucrose; Bif:

bifurcose (1 and 6-kestotetraose); 1-K: 1-kestotriose; 6G-K: 6G-kestotriose; 6-K: 6-kestotriose; Nys: nystose (1,1-kestotetraose);

6G,6-K: 6G,6-kestotetraose.
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from its degradation by a bifurcosidase activity or from

inhibition of its synthesis by the products of the 6G-FFT/1-

FFT activity. 6-SFT and 6G-FFT/1-FFT share common
substrates, sucrose and 1-kestotriose, but give different

products by catalysing fructosyl transfer either from sucrose

to 1-kestotriose or from 1-kestotriose to sucrose, respec-

tively. No affinity measurements have been attempted for

the two enzymes. However, since the 6-SFTs from Lolium

and barley show close characteristics in vitro, as demon-
strated by the present work, it is reasonable to assume that

the 6-SFT from wheat might be quite similar too. Schroeven

et al. (2008) derived an apparent Km of between 300 and

Fig. 8. Expression of the 6-SFT gene, as compared with 18S rRNA transcript expression, in elongating leaf bases, mature leaf blades,

and mature leaf sheaths of L. perenne plants. Plants were cultivated for 8 weeks with a photoperiod of 16 h at day/night temperatures of

22/18 �C and further subjected to the same conditions (control plants) or to continuous light with roots at 4 �C (induced plants) for 72 h.

Gene expression was determined by PCR using gene-specific primers and visualized by ethidium bromide staining.

Fig. 7. Tissue distribution of 6-SFT transcripts as compared with 18S rRNA transcripts. After 8 weeks of growth, plants were harvested

and the mature leaves separated from the elongating leaves. Sheaths and elongating leaf bases previously enclosed by the sheaths were

dissected longitudinally into five segments (four 10-mm-long segments, 0–40 mm from the leaf base, and a fifth variable length segment

of ;40 mm). Blades and the emerged part of the elongating leaves were divided into three equal parts. Gene expression was

determined by PCR using gene-specific primers and visualized by ethidium bromide staining.
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400 mM for fructosyl transfer from sucrose to 1-kestotriose

by the wheat 6-SFT. Since the donor Km for sucrose was

estimated at 16 mM, it can be derived that the acceptor Km

for 1-kestotriose should be very high to explain the overall

apparent Km. On the other hand, a rough estimation of the

donor Km for 1-kestotriose of the Lolium 6G-FFT (Lasseur

et al., 2006) was ;300 mM. Therefore, absence of bifurcose

in L. perenne tissues might be explained by a higher affinity
of 6G-FFT/1-FFT for 1-kestotriose than 6-SFT for the

same substrate. Moreover, from data presented in Fig. 6, it

could be presumed that the affinity of perennial ryegrass 6-

SFT to 1-kestotriose was lower than that of barley 6-SFT

while its affinity to 6G-kestotriose was higher. Therefore,

the absence of bifurcose in L. perenne tissues might be

explained by a higher affinity of 6G-FFT/1-FFT for 1-

kestotriose than that of 6-SFT for the same substrate,
together with a high affinity of 6-SFT for 6G-kestotriose

when it is produced.

In addition to the 6-SFT activity, the recombinant

protein exhibits 1-SST, 1-FEH, and 1-FFT activities. The

1-FFT activity is probably the reason why a protein sharing

99% identity with Lp6-SFT was first called 1-FFT by

Yamada (AN AB186920) (personal communication

reported by Chalmers et al., 2005). The associate activities
might be artefactual due to differences in folding or

glycosylation pattern as demonstrated for barley and wheat

6-SFT when expressed in P. pastoris (Hochstrasser et al.,

1998; Kawakami and Yoshida, 2002).

Conclusively, fructans present in L. perenne might be

synthesized by a three-enzyme system including 1-SST, 6G-

FFT together with 1-FFT, and 6-SFT (Fig. 9). Together

with 1-SST, 6-SFT is responsible for diverting sucrose to
fructans. In grasses, 6-SFT has therefore a prominent role

in fructan synthesis, conforming to the hypothetical model

suggested by Wiemken et al. (1995).

Regulation of 6-SFT expression is tissue specific

Fructan-synthesizing genes show different temporal and

spatial patterns of expression depending on the C sink-

source status in the leaves. Indeed, in sink leaf tissues of

grass species, the largest amount of 6-SFT mRNA was

found in the first segment of elongating leaves and leaf

sheaths (Fig.7), where large fructan stores are deposited

temporarily and where fructan-synthesizing activities

(1-SST and 6G-FFT) are highest (Chalmers et al., 2003;

Lasseur et al., 2006). It declined thereafter along the

leaves, together with fructan and enzymatic levels. In

L. temulentum, the putative fructosyltransferase FT 2:2,

sharing 96.4% homology with Lp6-SFT at the DNA level,

was also predominantly expressed in tiller bases (Gallagher

et al., 2004). A similar result was obtained for 1-SST in the

developing leaf of Festuca arundinacea (Lüscher et al.,
2000). In sink tissues of Lolium, transcript profiles of S-type

FTs (1-SST, 6-SFT) and F type FT (6G-FFT) genes,

generally consistent with both enzymatic activity measure-

ments whenever possible [1-SST activity, 6G-FFT activity

but unfortunately not 6-SFT activity since the substrate

(6G-kestotriose) is not commercially available] and levels of

fructan accumulation, suggest that these genes are regulated

primarily at the transcriptional level.
Surprisingly, in elongating leaves, Lp6-SFT was expressed

at the tip but not in the proximal part of the leaf that

had emerged from the sheath, similarly to 1-SST in

F. arundinaea leaves (Lüscher et al., 2000). However,

fructans barely accumulate at the leaf tip (Lasseur et al.,

2006). Interestingly, similar results have been reported for

the putative fructosyltransferase FT 2:2 of L. temulentum.

Transcripts were detected in photosynthetically active tissue
but did not correlate with fructan synthesis (Gallagher

et al., 2004). Moreover, Lp6-SFT transcripts accumulated in

leaf blades of plants that were continuously illuminated but

where barely any fructan accumulated (Lasseur et al., 2006).

It could be argued that photosynthetically active tissues

keep on exporting sucrose, and might not reach the sucrose

threshold to allow efficient fructan accumulation despite the

presence of active FTs. Unfortunately and as reported
above, 6-SFT activity increase could not be assessed.

However, since in the same conditions, other FT activity

increase was prevented (Lasseur et al., 2006), it is hypoth-

esized that in photosynthetically active tissue, fructan

metabolism genes including Lp1-SST, Lp6G-FFT, and

probably also Lp6-SFT, are regulated mainly at post-

transcriptional level in a context of forced accumulation of

fructans throughout the whole plant. As in barley leaf
blades, regulation might differ according to the cell type.

For example, it has been shown previously that Hv6-SFT id

expressed in the mesophyll, the parenchymatous bundle

sheath, and phloem parenchyma but not in epidermal cells

(Pollock et al., 2003). No mechanistic insights into such

Fig. 9. Model of the synthesis of the different Lolium-type fructans by 1-SST, 6G-FFT/1-FFT, and 6-SFT.
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regulation at the post-transcriptional level have been pro-

vided so far for any FT. Thus, further research is needed to

identify the factors involved in fructan synthesis regulation.

Conclusion

In conclusion, we have cloned and functionally character-

ized for the first time a 6-SFT cDNA in a forage grass. We
have shown that the regulation of gene expression depends

on the tissue according to its sink-source status. In addition,

we have demonstrated (i) that 6G-FFT could compete with

6-SFT for 1-kestotriose forming 6G-kestotriose, precluding

the formation of bifurcose by 6-SFT, and (ii) that 6-SFT

has a preference for 6G-kestotriose over 1-kestotriose as

fructosyl acceptor substrate so that the drive of fructosyl

flux is directed to the synthesis of levan neoseries by the
concerted action of these two enzymes. We have then

provided new data that contribute to a better understanding

of fructan structural diversity in the plant kingdom.
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