5 research outputs found

    Convective dispersion without molecular diffusion

    Full text link
    A method-of-moments scheme is invoked to compute the asymptotic, long-time mean (or composite) velocity and dispersivity (effective diffusivity) of a two-state particle undergoing one-dimensional convective-diffusive motion accompanied by a reversible linear transition (``chemical reaction'' or ``change in phase'') between these states. The instantaneous state-specific particle velocity is assumed to depend only upon the instantaneous state of the particle, and the transition between states is assumed to be governed by spatially-independent, first-order kinetics. Remarkably, even in the absence of molecular diffusion, the average transport of the ``composite'' particle exhibits gaussian diffusive behavior in the long-time limit, owing to the effectively stochastic nature of the overall transport phenomena induced by the interstate transition. The asymptotic results obtained are compared with numerical computations.Comment: to appear in Physica

    Aquatic-terrestrial transitions of feeding systems in vertebrates : a mechanical perspective

    Get PDF
    Transitions to terrestrial environments confront ancestrally aquatic animals with several mechanical and physiological problems owing to the different physical properties of water and air. As aquatic feeders generally make use of flows of water relative to the head to capture, transport and swallow food, it follows that morphological and behavioral changes were inevitably needed for the aquatic animals to successfully perform these functions on land. Here, we summarize the mechanical requirements of successful aquatic-to-terrestrial transitions in food capture, transport and swallowing by vertebrates and review how different taxa managed to fulfill these requirements. Amphibious ray-finned fishes show a variety of strategies to stably lift the anterior trunk, as well as to grab ground-based food with their jaws. However, they still need to return to the water for the intra-oral transport and swallowing process. Using the same mechanical perspective, the potential capabilities of some of the earliest tetrapods to perform terrestrial feeding are evaluated. Within tetrapods, the appearance of a mobile neck and a muscular and movable tongue can safely be regarded as key factors in the colonization of land away from amphibious habitats. Comparative studies on taxa including salamanders, which change from aquatic feeders as larvae to terrestrial feeders as adults, illustrate remodeling patterns in the hyobranchial system that can be linked to its drastic change in function during feeding. Yet, the precise evolutionary history in form and function of the hyolingual system leading to the origin(s) of a muscular and adhesive tongue remains unknown

    Center of gravity and minimal lift coefficient limits of a gliding parachute

    No full text

    Lifting-line theory of an arched wing in asymmetric flight

    No full text
    corecore