5,809 research outputs found
Transplacental transmission of field and rescued strains of BTV-2 and BTV-8 in experimentally infected sheep
Transplacental transmission of bluetongue virus has been shown previously for the North European strain of serotype 8 (BTV-8) and for tissue culture or chicken egg-adapted vaccine strains but not for field strains of other serotypes. In this study, pregnant ewes (6 per group) were inoculated with either field or rescued strains of BTV-2 and BTV-8 in order to determine the ability of these viruses to cross the placental barrier. The field BTV-2 and BTV-8 strains was passaged once in Culicoides KC cells and once in mammalian cells. All virus inoculated sheep became infected and seroconverted against the different BTV strains used in this study. BTV RNA was detectable in the blood of all but two ewes for over 28 days but infectious virus could only be detected in the blood for a much shorter period. Interestingly, transplacental transmission of BTV-2 (both field and rescued strains) was demonstrated at high efficiency (6 out of 13 lambs born to BTV-2 infected ewes) while only 1 lamb of 12 born to BTV-8 infected ewes showed evidence of in utero infection. In addition, evidence for horizontal transmission of BTV-2 between ewes was observed. As expected, the parental BTV-2 and BTV-8 viruses and the viruses rescued by reverse genetics showed very similar properties to each other. This study showed, for the first time, that transplacental transmission of BTV-2, which had been minimally passaged in cell culture, can occur; hence such transmission might be more frequent than previously thought
Post-test simulations for the NACIE-UP benchmark by STH codes
This paper illustrates the results obtained in the last phase of the NACIE-UP benchmark activity foreseen inside the EU SESAME Project. The purpose of this research activity, performed by system thermal–hydraulic (STH) codes, is finalized to the improvement, development and validation of existing STH codes for Heavy Liquid Metal (HLM) systems. All the participants improved their modelling of the NACIE-UP facility, respect to the initial blind simulation phase, adopting the actual experimental boundary conditions and reducing as much as possible sources of uncertainty in their numerical model. Four different STH codes were employed by the participants to the benchmark to model the NACIE-UP facility, namely: CATHARE for ENEA, ATHLET for GRS, RELAP5-3D© for the “Sapienza” University of Rome and RELAP5/Mod3.3(modified) for the University of Pisa. Three reference tests foreseen in the NACIE-UP benchmark and carried out at ENEA Brasimone Research Centre were analysed from four participants. The data from the post-test analyses, performed independently by the participant using different STH codes, were compared together and with the available experimental results and critically discussed
Magnetic field tuning of antiferromagnetic YbPt
We present measurements of the specific heat, magnetization, magnetocaloric
effect and magnetic neutron diffraction carried out on single crystals of
antiferromagnetic YbPt, where highly localized Yb moments order at
K in zero field. The antiferromagnetic order was suppressed to
by applying a field of 1.85 T in the plane.
Magnetocaloric effect measurements show that the antiferromagnetic phase
transition is always continuous for , although a pronounced step
in the magnetization is observed at the critical field in both neutron
diffraction and magnetization measurements. These steps sharpen with decreasing
temperature, but the related divergences in the magnetic susceptibility are cut
off at the lowest temperatures, where the phase line itself becomes vertical in
the field-temperature plane. As , the antiferromagnetic
transition is increasingly influenced by a quantum critical endpoint, where
ultimately vanishes in a first order phase transition.Comment: 9 pages, 6 figure
Large adiabatic temperature and magnetic entropy changes in EuTiO3
We have investigated the magnetocaloric effect in single and polycrystalline
samples of quantum paraelectric EuTiO3 by magnetization and heat capacity
measurements. Single crystalline EuTiO3 shows antiferromagnetic ordering due to
Eu2+ magnetic moments below TN = 5.6 K. This compound shows a giant
magnetocaloric effect around its Neel temperature. The isothermal magnetic
entropy change is 49 Jkg-1K-1, the adiabatic temperature change is 21 K and the
refrigeration capacity is 500 JKg-1 for a field change of 7 T at TN. The single
crystal and polycrystalline samples show similar values of the magnetic entropy
change and adiabatic temperature changes. The large magnetocaloric effect is
due to suppression of the spin entropy associated with localized 4f moment of
Eu2+ ions. The giant magnetocaloric effect together with negligible hysteresis,
suggest that EuTiO3 could be a potential material for magnetic refrigeration
below 20 K.Comment: 12 pages, 4 figure
Association between exercise blood pressure, Na+ ingestion and Cold Pressor Test: A Pilot Study
Please view abstract in the attached PDF fil
Methodological assessment of HCC literature
Despite the fact that the hepatocellular carcinoma (HCC) represents a major health problem, very few interventions are available for this disease, and only sorafenib is approved for the treatment of advanced disease. Of note, only very few interventions have been thoroughly evaluated over time for HCC patients compared with several hundreds in other, equally highly lethal, tumours. Additionally, clinical trials in HCC have often been questioned for poor design and methodological issues. As a consequence, a gap between what is measured in clinical trials and what clinicians have to face in daily practice often occurs. As a result of this scenario, even the most recent guidelines for treatment of HCC patients use low strength evidence to make recommendations. In this review, we will discuss some of the potential methodological issues hindering a rational development of new treatments for HCC patient
Empirical comparison of high gradient achievement for different metals in DC and pulsed mode
For the SwissFEL project, an advanced high gradient low emittance gun is
under development. Reliable operation with an electric field, preferably above
125 MV/m at a 4 mm gap, in the presence of an UV laser beam, has to be achieved
in a diode configuration in order to minimize the emittance dilution due to
space charge effects. In the first phase, a DC breakdown test stand was used to
test different metals with different preparation methods at voltages up to 100
kV. In addition high gradient stability tests were also carried out over
several days in order to prove reliable spark-free operation with a minimum
dark current. In the second phase, electrodes with selected materials were
installed in the 250 ns FWHM, 500 kV electron gun and tested for high gradient
breakdown and for quantum efficiency using an ultra-violet laser.Comment: 25 pages, 13 figures, 5 tables. Follow up from FEL 2008 conference
(Geyongju Korea 2008) New Title in JVST A (2010) : Vacuum breakdown limit and
quantum efficiency obtained for various technical metals using DC and pulsed
voltage source
Beta-decay half-lives and beta-delayed neutron emission probabilities of nuclei in the region below A=110, relevant for the r-process
Measurements of the beta-decay properties of r-process nuclei below A=110
have been completed at the National Superconducting Cyclotron Laboratory, at
Michigan State University. Beta-decay half-lives for Y-105, Zr-106,107 and
Mo-111, along with beta-delayed neutron emission probabilities of Y-104,
Mo-109,110 and upper limits for Y-105, Zr-103,104,105,106,107 and Mo-108,111
have been measured for the first time. Studies on the basis of the quasi-random
phase approximation are used to analyze the ground-state deformation of these
nuclei.Comment: 21 pages, 10 figures, article accepted for publication in Physical
Review
TOF-Brho Mass Measurements of Very Exotic Nuclides for Astrophysical Calculations at the NSCL
Atomic masses play a crucial role in many nuclear astrophysics calculations.
The lack of experimental values for relevant exotic nuclides triggered a rapid
development of new mass measurement devices around the world. The
Time-of-Flight (TOF) mass measurements offer a complementary technique to the
most precise one, Penning trap measurements, the latter being limited by the
rate and half-lives of the ions of interest. The NSCL facility provides a
well-suited infrastructure for TOF mass measurements of very exotic nuclei. At
this facility, we have recently implemented a TOF-Brho technique and performed
mass measurements of neutron-rich nuclides in the Fe region, important for
r-process calculations and for calculations of processes occurring in the crust
of accreting neutron stars.Comment: 8 pages, 4 figures, submitted to Journal of Physics G, proceedings of
Nuclear Physics in Astrophysics II
- …
