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Magnetic field tuning of antiferromagnetic Yb3Pt4
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We present measurements of the specific heat, magnetization, magnetocaloric effect, and magnetic neutron
diffraction carried out on single crystals of antiferromagnetic Yb3Pt4, where highly localized Yb moments order
at TN = 2.4 K in zero field. The antiferromagnetic order was suppressed to TN → 0 by applying a field of 1.85 T
in the ab plane. Magnetocaloric effect measurements show that the antiferromagnetic phase transition is always
continuous for TN > 0, although a pronounced step in the magnetization is observed at the critical field in both
neutron diffraction and magnetization measurements. These steps sharpen with decreasing temperature, but the
related divergences in the magnetic susceptibility are cut off at the lowest temperatures, where the phase line
itself becomes vertical in the field-temperature plane. As TN → 0, the antiferromagnetic transition is increasingly
influenced by a quantum critical end point, where TN ultimately vanishes in a first-order phase transition.
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I. INTRODUCTION

Materials in which magnetic order can be suppressed to low
or even vanishing temperatures have proven to be rich sources
of new physics. In different families of compounds, based
both on transition-metal and rare-earth moments, the relative
weakness or absence of competing magnetic phases makes it
possible to observe new types of ordered states, most notably
superconductivity1,2 and quasiordered phases such as “spin
nematics,”3 that would normally be obscured. The magnetic
excitations are greatly modified when the onset of magnetic
order occurs at low temperatures, due to the importance of
quantum-mechanical fluctuations between the ordered and
disordered states, leading to their characteristic E/T scaling4,5

and to unusual temperature divergencies in the specific heat
and magnetic susceptibility.6–11 It is a matter of continuing
debate as to how these fluctuations enable or destabilize novel
orders, for instance whether they provide a pairing mechanism
for unconventional superconductors.12

Very few compounds form with magnetic order restricted
to zero temperature, and in most cases it is necessary to use
pressures, compositions, or magnetic fields to tune the ordering
temperature to T = 0 to form a quantum critical point (QCP)
if magnetic order is continuous, or a quantum critical end
point (QCEP) if the magnetic transition becomes first order.
It is well appreciated that quantum critical compounds are
exquisitely sensitive to disorder, and it has been established
that even modest amounts of disorder can change the order of
magnetic transitions if the transition temperature is sufficiently
low.13–15 Pressure tuning of magnetic transitions has an ap-
pealing simplicity, since it largely avoids these concerns about
disorder, but experimental access is somewhat limited due to
the bulky equipment needed for high-pressure measurements.
Thermodynamic measurements are especially problematic at
high pressures, although they are of particular value for

understanding how cooperative phases are stabilized at the
lowest temperatures. For these reasons, magnetic field tuning
of magnetic transitions is increasingly attractive, although it
has been noted that the quantum criticality induced by field
and pressure within a single material may not be identical.16–18

Magnetic fields affect the stability of magnetic order at two
different levels. First, fields can destabilize the magnetic struc-
ture, selected by the system as the lowest energy configuration
for T → 0 in zero field. This is effected by the suppression
of critical fluctuations, hampering the establishment of long-
ranged and long-lived magnetic correlations that can lead to
magnetic order itself. Second, magnetic fields can change the
properties of individual magnetic moments as well, resulting
in Zeeman splitting of the states of the crystalline electric field
manifold, and in some cases by the suppression of moment
compensation by the Kondo effect. Both effects are expected
to be important for heavy-fermion compounds, where two
limiting behaviors can be identified. In one case, magnetic
order emerges at TN from a paramagnetic state where the
moments are highly localized, having only a weak exchange
coupling to the conduction electron states whose energy
scale kBT0 � kBTN . Alternatively, the crystal-field states can
be extensively broadened via hybridization, possibly to the
point when the localized character can be considered minimal
or absent when magnetic order occurs at kBTN � kBT0.

Field-tuning experiments have been pursued extensively
in complex systems such as CeCu6−xAux

16 and YbRh2Si2,19

where the antiferromagnetic phase line remains continuous as
TN → 0 at a quantum critical field BQCP. It is evident here
that not only does the magnetic order evolve with field, but
also the underlying electronic structure can itself be critical
at or near BQCP.10,20 We present here an experimental study
of the field-temperature phase diagram of the heavy-fermion
antiferromagnet Yb3Pt4. Yb3Pt4 orders antiferromagnetically
at a Néel temperature TN = 2.4 K.21 While Yb3Pt4 is metallic,
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magnetic order develops directly from a paramagnetic state
where the fluctuating moments correspond to the ground
doublet of the crystal-field-split Yb3+ ion, with no indication
of any Kondo effect. The spin waves in the antiferromagnetic
state are conventional, resulting from the exchange field acting
on the doublet ground state.22 The unit cell of Yb3Pt4 is very
large, and the absence of strong magnetic anisotropy suggests
that Fermi surface nesting will play only a small role here in
stabilizing magnetic order. We will argue here that the relative
simplicity of the antiferromagnetic order in Yb3Pt4 allows us
to explore the field tuning of antiferromagnetic order without
the complexities of electronic delocalization that are found in
systems such as YbRh2Si2.

We present the results of specific heat, magnetization, and
magnetic neutron diffraction measurements that demonstrate
that magnetic fields suppress antiferromagnetic order in
Yb3Pt4, causing it to vanish at a critical field of 1.85 T. An
analysis of the magnetization, specific heat, and the mag-
netocaloric effect indicates that the magnetic order remains
continuous for all nonzero temperatures, but that the influence
of a T = 0 QCEP becomes increasingly strong as TN → 0,
leading to qualitative modifications to the phase line when
TN � 1.2 K. Divergences in the temperature dependence of the
magnetic susceptibility are cut off at the lowest temperatures,
suggesting that antiferromagnetic order in Yb3Pt4 occurs via a
first-order transition at zero temperature. The field-temperature
phase diagram found for Yb3Pt4 is of a type that has not been
previously reported for heavy-fermion compounds, although
it combines features of metamagnets and also systems with
true first-order transitions.

II. EXPERIMENTAL DETAILS

Single crystals of Yb3Pt4 were grown from lead flux,
and powder x-ray diffraction measurements were used to
verify the rhombohedral Pu3Pd4 structure type.21,23 The field
B and temperature T -dependent dc magnetization M(B,T )
was measured using a Quantum Design Magnetic Properties
Measurement System (MPMS) for temperatures above 1.8 K,
and at lower temperatures using a Hall sensor-based technique
that was calibrated to the MPMS data above 1.8 K.24–26

The specific heat was measured for temperatures that ranged
from 0.1 to 4 K, and in fields as large as 3 T using a
Quantum Design Physical Property Measurement System
(PPMS), equipped with 3He and dilution refrigerator inserts.
As described elsewhere, the magnetic and electronic parts
of the specific heat CM were obtained by subtracting the
specific heat of isostructural but nonmagnetic Lu3Pt4 from the
total specific heat C.23 Measurements of the magnetocaloric
effect (MCE) were performed using the standard PPMS 3He
specific-heat puck where the sample was heat sunk to a
calibrated resistive thermometer. By sweeping the magnetic
field up and down at ∼20–50 Oe/s, the sample temperature
variation could be obtained by measuring the thermometer
resistance at different fixed bath temperatures. Because the
thermal link between the sample platform and thermal bath
is very weak, with a thermal conductivity of only 1.7 × 10−7

W/K at T = 1.0 K, the relaxation time that was deduced from
specific-heat measurements for the 17 mg Yb3Pt4 sample used
in MCE measurements was as large as 300 s at 1 K. We

limit the range of the field sweep so that it can be completed
well within this time interval, and so our experiments can
be considered to be quasiadiabatic. Neutron diffraction was
carried out on a 65 mg single crystal of Yb3Pt4 at the
NIST Center for Neutron Research using the BT- 7 double
focusing triple-axis spectrometer with the neutron wavelength
λ = 2.47 Å.

III. EXPERIMENTAL RESULTS

X-ray diffraction shows that Yb3Pt4 crystallizes in the
reported rhombohedral Pu3Pd4-type of structure,27 which has
18 Yb atoms per unit cell, all with the same site symmetry, and
24 Pt atoms per unit cell, with three different site symmetries.
Yb3Pt4 orders antiferromagnetically at the Néel temperature
TN = 2.4 K21 and the magnetic structure was determined
from neutron diffraction measurements using representation
analysis.23 The fundamental building block of this q = 0
antiferromagnetic structure is a triad of Yb moments, each
rotated 120 degrees with respect to each other. Each triad
is matched by a reflected triad to form octahedra, which
are stacked in a staggered fashion along the c axis to form
the overall magnetic structure. Magnetization measurements
indicate that the hard axis is along the c axis and the easy
axis lies in the ab plane. The magnetic anisotropy is weak
inside the ab plane, with χ[110]/χ[100] � 1.07. It is much bigger
between the ab plane and the c axis, with χab/χc � 6 at low
temperatures.

There is significant evidence that the Yb moments in Yb3Pt4
are spatially localized over much of the range of experimental
temperatures, and so their f electrons are excluded from
the metallic Fermi surface. The magnetic susceptibilities for
fields along both the c axis and in the ab plane are in
agreement with Curie-Weiss expressions above � 150 K,
giving a paramagnetic moment about 4.24μB/Yb, as expected
for trivalent Yb.21 A pronounced anomaly in the zero-field
specific heat C is well described by a Schottky expression
involving four crystal-field-split doublets, just as expected for
Yb3+ in a crystal symmetry that is lower than cubic. Inelastic
neutron scattering measurements confirm that there are four
magnetic doublets that are well separated in energy, and since
the first excited state is �7.5 meV (∼87 K) above the ground
state,23 this ground doublet dominates the magnetic properties
of Yb3Pt4 at low temperatures. Antiferromagnetic order occurs
in Yb3Pt4 at 2.4 K, signaled by a mean-field peak in the specific
heat.21 The entropy reaches ∼0.8R ln2 at TN , confirming
that the doublet moment orders with a minimum of critical
fluctuations or with appreciable suppression of the ordering
moment via the Kondo effect. Triple-axis spectroscopy was
used to show that the temperature evolution of the spin
waves in the antiferromagnetic state22 is similar to that of
the magnetic order parameter, suggesting that the spin waves
are conventional and arise from the action of the exchange
coupling on the crystal-field-split single ion states.

We have measured the temperature dependencies of the
magnetic and electronic specific heat CM of Yb3Pt4 with
different values of the magnetic field B in the ab plane
[Fig. 1(a)]. Since the magnetic anisotropy inside the ab plane
is very small, we do not specify the magnetic field direction
inside the ab plane for all the experiments shown here and

134409-2



MAGNETIC FIELD TUNING OF ANTIFERROMAGNETIC Yb . . . PHYSICAL REVIEW B 84, 134409 (2011)

FIG. 1. (Color online) (a) Temperature dependencies of the mag-
netic and electronic specific heat CM . (b) Field dependencies of CM at
different fixed temperatures, as indicated. (c) Field dependencies of
CM/T at different fixed temperatures, as indicated. Dashed line shows
that the phase line TN (B) becomes field-independent for TN � 0.9 K.
The magnetic field in (a)–(c) is perpendicular to the c axis. Solid lines
in (a)–(c) are guides for the eye.

below. In low fields, the specific-heat jump at TN has a trian-
gular shape evocative of a mean-field transition. TN decreases
with increasing field, while the magnitude of the ordering
anomaly decreases and eventually becomes undetectable for
fields greater than �1.75 T, where TN < 1.2 K. While these
data may suggest that the antiferromagnetic phase line TN (B)
terminates at a critical end point with TN = 1.2 K, B = 1.75
T, it is also possible that it simply becomes very steep as
TN → 0. To distinguish between these two possibilities, field
scans of the specific heat CM (B) were performed at different
fixed temperatures [Fig. 1(b)]. Very different behaviors were
found above and below 1.2 K. For T � 1.2 K, there is a step in
CM (B) as the field transits the phase line TN (B), reminiscent
of the step that is found in CM (T ) when increasing temperature
is used to suppress antiferromagnetic order in a fixed magnetic
field [Fig. 1(a)]. This step evolves into a broad peak centered
at TN (B) for T � 1.2 K, whose magnitude decreases and
becomes very small at the lowest temperatures [Fig. 1(c)].
There is no measurable change in the field at which the
peak in CM (B) occurs for any temperature below �0.9 K,
indicating that within the accuracy of our measurements the
antiferromagnetic phase line becomes vertical in the B-T plane
as TN → 0 for the magnetic field B0 = 1.85 T.

The full antiferromagnetic phase line TN (B) determined
from field sweeps of the specific heat C is presented in

FIG. 2. (Color online) Antiferromagnetic order is found in
the shaded area of the field-temperature phase diagram of Yb3Pt4,
where the phase boundary TN (B) is determined from field scans
of the specific heat CM (•), from the temperature dependencies
of the magnetization M , carried out in different fixed fields (�),
from the field dependencies of the magnetization M , carried out at
different fixed temperatures (�), and from the magnetic intensity of
the (110) Bragg peak, measured in a neutron diffraction experiment
for different fixed temperatures and fields (�). Error bars indicate the
width of the moment step in the neutron diffraction experiment. The
red dashed line is a fit to the expression TN (B) = TN (0)[1 − ( B

B0
)2],

where TN (0) = 2.4 K and B0 = 2.9 T. The vertical dash-dotted line
indicates the 1.85 T field at which TN → 0. The solid line is a guide
for the eye.

Fig. 2. At the lowest fields, TN (B) follows a smooth power
law from its B = 0 value TN (0) = 2.4 K, i.e., TN (B) =
TN (0)[1 − ( B

B0
)2], qualitatively consistent with the mean-field

nature of the phase transition found in this part of the phase
diagram and suggesting a conventional quantum critical point
at a field B0 � 2.9 T that is never actually reached. The
phase line abruptly deviates from this behavior as the field
approaches 1.85 T, and since its final approach to the T = 0
axis cannot be described by any power law, quantum criticality
is ultimately avoided in field-tuned Yb3Pt4.

A more detailed picture of the antiferromagnetic phase
transition is revealed by the magnetization measurements
presented in Fig. 3. The temperature dependencies of the
magnetization M/B were measured in different fixed fields
B [Fig. 3(a)], displaying distinct cusps at TN . As we found in
the specific-heat measurements, TN is driven to lower temper-
atures by the application of magnetic fields B, and the values
of TN (B) agree very well between the two measurements
(Fig. 2). The ordering anomaly in M(T )/B broadens and is no
longer observed above 0.5 K for B � 1.85 T. Given the vertical
nature of the phase line TN (B) revealed by the specific-heat
measurements, we turn to field sweeps of the magnetization
M(B) to clarify the phase behavior at the lowest temperatures.
We emphasize that no hysteresis is observed between measure-
ments performed with increasing and decreasing fields, at any
field or temperature. Figure 3(b) shows that M(B) is initially
linear in field, but deviates from this initial slope near the
field-driven transition at 1.85 T before becoming linear again
with a much smaller slope at the highest fields. With decreasing
temperature, this slope change becomes sharper, suggesting
that the associated differential susceptibility χ (B) = dM/dB

is becoming very large at TN (B). Indeed, Fig. 3(c) shows that
there is a distinct peak in χ (B) that becomes sharper and
increases strongly in magnitude as the temperature decreases.
Figure 3(d) shows that the maximum value of the susceptibility
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FIG. 3. (Color online) (a) Temperature dependencies of the
magnetization M divided by different measuring fields B, as indi-
cated. The arrows indicate the antiferromagnetic transitions in each
field. (b) Field dependencies of M at indicated temperatures. Each
magnetization curve above 0.2 K is offset for clarity. Vertical dotted
lines indicate the range of fields where M(B) deviates from linearity,
as evidenced by departures from linear extrapolations of low- and
high-field M(B) (red dashed lines). (c) The numerical derivative
χ = dM/dB of the data in (b). (d) Temperature dependence of the
maximum value of χ = dM/dB from (c). The dashed line is the fit to
χ � T −0.5, while the solid line is a guide for the eye that emphasizes
the saturation of χ for T � 0.35 K. In (a)–(c), the magnetic field is
perpendicular to the c axis.

χ at TN (B) initially increases according to a power law
χ ∼ T −1/2, but saturates below �0.35 K. We considered the
possibility that experimental factors may play a role in this
saturation, for instance the degree of thermal sinking of the
sample on the Hall sensor, found to be appreciable below
�0.15 K, as well the precision of the M(B) measurement
itself, which limits the degree of divergence possible in χ (B),
obtained by numerically differentiating M(B). These effects
are minimal above 0.2 K, where the saturation of the power-law
divergence of χ (T ) primarily reflects a broadening of the

antiferromagnetic transition, due either to disorder in the
sample or alternatively to thermal or quantum fluctuations.
It is evident from Fig. 3(b) that the width of χ (B) decreases
slightly with decreasing temperature, suggesting that disorder
is not the only factor determining the breadth of the field-driven
transition as TN → 0, but that quantum fluctuations are also
likely to play an increasing role.

The most direct information about the evolution of anti-
ferromagnetic order with field and temperature comes from
neutron diffraction measurements. We previously showed
that the magnitude of the magnetic part of the (110) Bragg
peak in zero magnetic field obeys a mean-field temperature
dependence, consistent with the mean-field character of the
specific heat near TN .23 Figure 4(a) confirms that magnetic
field decreases the magnitude of the order parameter, and for
temperatures larger than �1.2 K it drops smoothly to zero
along the antiferromagnetic phase line. We have added these
critical fields and temperatures to the phase diagram in Fig. 2,
showing that they are in good agreement with values for TN (B)
obtained from specific-heat and magnetization measurements.
For T � 1.2 K, there is a distinct broadening of the transition,
and at the lowest temperatures there is a pronounced step
in the moment �M � 0.2μB/Yb centered at the critical
field B0 = 1.85 T. Like the step in M(B), the breadth
of the step in the ordered moment remains considerable,
even at the lowest temperatures. Figure 4(b) shows that the
transition widths found in the two experiments are very similar,
�0.25 T.

The picture that emerges from the specific heat, mag-
netization, and neutron diffraction experiments is that the
antiferromagnetic phase transition is continuous and mean-
field-like in low fields, but when magnetic fields suppress TN

to values less than �1.2 K, the broadened steps in the moment
suggest that the transition may develop a first-order character.

FIG. 4. (Color online) (a) Field dependencies of the (110)
magnetic Bragg peak intensity at different temperatures, as indicated.
Solid lines are guides for the eye. (b) The magnetization (•) and
differential magnetic susceptibility (solid line) at 0.2 K plotted
together with the (110) magnetic peak intensity at 0.5 K (�). Vertical
dashed lines delineate the range of fields where there are similar
width steps in the Yb moment measured both by neutrons and by dc
magnetization measurements. The magnetic field in both experiments
is perpendicular to the c axis.
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To test this hypothesis, we have carried out measurements of
the magnetocaloric effect (MCE) to determine if a latent heat
is associated with the antiferromagnetic transition along the
vertical part of the phase line, i.e., when TN � 1.2 K. The MCE
is the temperature change of a material when a magnetic field
is changed adiabatically,28–31 and it has been used as a practical
and sensitive way to detect latent heat at magnetic phase
transitions and to study the quantum criticality in correlated
electron systems.32–38 The results of the MCE measurements
are shown in Fig. 5(a), where the solid line represents the
sample temperature T , measured as the magnetic field is
scanned. A clear increase in the slope dT /dB is observed
as the antiferromagnetic phase is excited at TN (B), but there
is no discontinuity or jump in T (B) anywhere along the phase
line, either for TN � 1.2 K where the transition is definitively
continuous, or at lower values where the nature of the transition
is more ambiguous. We note that no differences are found
along the phase line between increasing and decreasing field
sweeps. To verify that the adiabatic condition is obeyed in these
MCE measurements, we calculated the entropy directly from
the specific-heat data in Fig. 1, and curves of equal entropy
are presented in Fig. 5(b). The MCE data follow the equal

FIG. 5. (Color online) (a) The effect of magnetic fields perpen-
dicular to the c axis on different initial sample temperatures. The
dashed line indicates the antiferromagnetic transition TN (B) taken
from Fig. 2, where the sample temperature increases due to the
magnetocaloric effect. (b) Contour plot of the entropy S calculated
directly from specific-heat CM measurements, where the black lines
indicate equal entropy curve. The red lines are the measured MCE
T (B). The open circles (◦) are the B-T phase boundary determined
from the field-dependent specific heat. The dotted line is a guide to the
eye. (c) Entropy S calculated from specific heat CM shown in Fig. 1
at different temperatures. Dashed line indicates that the maximum
entropy occurs along the field-independent antiferromagnetic phase
line TN (B).

entropy curves, indicating that the quasiadiabatic condition
is satisfied in both the antiferromagnetic and paramagnetic
phases. Since the MCE measurements find that no latent heat is
associated with the antiferromagnetic phase line in Yb3Pt4, we
conclude that the transition is continuous for all nonzero values
of TN .

Since the MCE experiments approximate the adiabatic
condition, the slope differences at TN (B) found in Fig. 5(a)
imply that the antiferromagnetic and paramagnetic states at the
same temperature and field have different entropies, and that
the difference between their respective entropies �S becomes
increasingly small with reduced temperature. This conclusion
is supported by the field dependence of the entropy S, extracted
from specific-heat measurements [Fig. 5(c)], where we see a
broad maximum in S at TN with a magnitude that decreases
with decreasing temperature. Despite the steps observed in
M(B) and neutron diffraction experiments for T � 1.2 K,
the MCE measurements apparently rule out a first-order
antiferromagnetic transition in Yb3Pt4 for nonzero TN . Does
this argument extend to TN = 0? The Clausius-Clapeyron
equation relates the slope of the antiferromagnetic phase line
dTN/dB to the differences between the magnetizations and
entropies of the antiferromagnetic and paramagnetic phases
at T = 0: dTN/dB = −�M/�S. The third law of thermo-
dynamics requires that �S = 0 for T = 0, and the vertical
nature of the phase line TN at the critical field B0 implies
that dTN/dB → −∞ for TN = 0. The Clausius-Clapeyron
equation is satisfied at TN = 0 when the transition is between
two states with different magnetizations, i.e., �M �= 0, as we
have seen in both the magnetization and neutron diffraction
measurements. Our conclusion is that the antiferromagnetic
phase line TN (B) in Yb3Pt4 is continuous at all nonzero
temperatures, but terminates in a T = 0 first-order transition
at a critical field B0 = 1.85 T.

IV. DISCUSSION AND CONCLUSION

Our current understanding is that there is no universal
path by which magnetic fields suppress antiferromagnetic
order to zero temperature in heavy-fermion compounds, and
the schematic phase diagrams presented in Fig. 6 seek to
categorize the simplest possibilities that have been identified
by experiments. They are not meant to capture the full
complexity of heavy-fermion compounds, which may pass
through a multiplicity of different structures en route to
the collapse of magnetic order,7 but rather to focus on
the final phase line that separates magnetic order from the
paramagnetic state. To the best of our knowledge, all heavy-
fermion antiferromagnets order via a continuous transition
in zero field. Figure 6(a) depicts the situation found in
systems such as YbRh2Si2,19 YbPtIn,39 CeCu6−xAux ,16 and
CeIn3−xSnx ,40 where the antiferromagnetic phase line remains
continuous as TN → 0 at a quantum critical field BQCP. Bulk
properties such as the magnetization scale as functions of T

and (B − BQCP),19,41 and the magnetic Grüneisen parameter
diverges as well for T = 0 and B = BQCP.42,43 Given that all
experiments have a lower temperature limit, it is fair to say that
it is not known in any compound whether the antiferromagnetic
phase line is continuous to TN = 0. However, it is evident that
the scaling associated with the quantum critical point at TN = 0
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FIG. 6. (Color online) Schematic phase diagrams for field-tuned
antiferromagnets. (a) The phase line of a field-tuned antiferromagnet
remains second order at all fields (solid line), ending at a continuous
transition with TN = 0, i.e., a quantum critical point (•). (b) The
phase line of a field-tuned antiferromagnet is initially second order
(solid line), but this phase line terminates at a tricritical point (�).
For smaller values of TN , the phase line is first order (dashed line),
ending at a first-order transition where TN = 0, i.e., a quantum critical
end point (◦). (c) An intermediate situation between (a) and (b),
where the first-order transition line in (b) has shrunk to a single
point with TN = 0, a quantum critical end point (◦). For all nonzero
values of TN , the phase line is continuous but strongly modified
from the second-order line shown in (a). (d) A three-dimensional
phase diagram with no magnetic order for T > 0 at any value of
field or other nonthermal variable �, such as pressure. There is a
quantum critical end point (◦) in the T = 0 B-� plane that separates
a first-order line (dashed line) from a line of continuous transitions
(solid line) that ends in a quantum critical point for B = 0 (•). The
red vertical arrow indicates the effect of lowering temperature in a
metamagnet, defined as a system that has no long-ranged order for
T �= 0, but positioned in the B-� parameter space close to a quantum
critical end point (◦).

and B = BQCP dominates many of the measured quantities
over a wide range of fields and temperatures.

A very different situation is realized when magnetic fields
are applied to conventional antiferromagnets such as rare-earth
aluminum garnets and FeCl2,44–46 which have continuous
antiferromagnetic transitions in zero field [Fig. 6(b)]. Here,
the antiferromagnetic phase line is initially second order but
terminates at a tricritical point.47,48 Since magnetic order
involves a broken symmetry, the phase line must continue
to TN = 0, and it does so as a line of first-order transitions
that terminate at a QCEP. Scaling is found in systems of
this type, both of the conventional variety in low and zero
fields, but more prominently in the vicinity of the tricritical
point.46,49 This phase diagram is very similar to the one
that was both predicted13 and experimentally realized50 in
field- and pressure-tuned metallic ferromagnets in which
disorder is weak. To the best of our knowledge, the phase
diagram in Fig. 6(b) has been found only in ferromagnetic
UGe2

51 and not in any antiferromagnetic heavy-fermion
compounds.

The phase diagram of Fig. 6(c) represents a situation that
is intermediate between Figs. 6(a) and 6(b) in that the line
of first-order transitions has now shrunk to a single point at

T = 0, and it is the influence of this point that keeps the
lowest-temperature part of the phase line from becoming the
more conventional second-order phase line found in YbRh2Si2
[Fig. 6(a)]. This is the phase diagram that best describes
Yb3Pt4, and perhaps also Yb5Pt9,52 CeRh2Si2,53 YbNiSi3,54,55

and CeNiGe3.56 Here, the phase line is always continuous for
TN �= 0, and no latent heat is found anywhere along the phase
line. The phase line superficially resembles the first-order
phase line of Fig. 6(b) since it becomes vertical as TN → 0.
The initial stabilization of antiferromagnetic order as a second-
order transition at B = 0 implies the general importance of
long-wavelength critical fluctuations through much of the
B-T plane, and the initial divergence of the susceptibility at
the critical field where χ (T ) ∼ T −γ generally reflects these
correlations. Since a true quantum critical point is ultimately
avoided in systems described by the phase diagram in Fig. 6(c),
the longest wavelength fluctuations must either be absent, as
in disordered systems, or are prohibited in some way from
contributing to the physical observables. We hypothesize that
their absence is responsible for the breakdown of scaling near
the QCEP, and for the general appearance of the phase line,
which increasingly resembles a first-order phase line, lacking
only the latent heat. Ultimately the failure of universality as
TN → 0 causes the antiferromagnetic phase line to terminate
in a first-order phase transition at zero temperature TN = 0,
also known as a quantum critical end point.

The most unimpeded view of the properties of a quan-
tum critical end point is found in systems in which no
magnetic order is present, at least for T �= 0. The most
heavily studied examples of these so-called metamagnetic
systems are CeRu2Si2 and Sr3Ru2O7.57–59 The signature of
metamagnetism is steps in the magnetization whose breadth
decreases with decreasing temperature. In some cases, a full
field-driven first-order transition results below a certain onset
temperature,60 but for CeRu2Si2 and Sr3Ru2O7 there is no sign
of long-ranged magnetic order at any field or temperature.
In both cases, there is a pronounced enhancement of the
magnetization and specific heat near the critical field, and with
reduced temperature the associated magnetic susceptibility
begins to diverge as χ (T ) ∼ T −γ .61 Instead of a maximum
in the specific heat, a dip is found in C at the critical B.
Unlike the case of Yb3Pt4, where the termination of the
nonzero temperature part of the phase line necessitates a true
phase transition at T = 0, no fine tuning is required for the
metamagnets. All that is required is that the metamagnet is
sufficiently close to a quantum critical end point, accessible by
tuning a nonthermal variable such as field angle in Sr3Ru2O7,59

or pressure in either system62,63 [Fig. 6(d)].
Unlike the case of clean ferromagnets, for which it is

theoretically and experimentally agreed that the phase line is
initially continuous at small fields but ultimately must become
first order when the Curie temperature becomes sufficiently
small, there is much less theoretical guidance for the range
of behaviors that might be possible for antiferromagnets
when TN → 0. There is a continuing need to identify new
systems that exemplify the differing phase diagrams that
are represented in Fig. 6. There are significant and intrinsic
obstacles that make the search for such systems inherently
challenging. One complication is that the suppression of
magnetic order can enable the stabilization of competing
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collective phases, most notably superconductivity, as found in
CeCoIn5,64 CeRhIn5,65 and CeCu2Si2.66 However interesting
and significant, these new phases obscure the part of the phase
diagram where antiferromagnetic order vanishes. Similarly,
experiments must be conducted at the very lowest temperatures
to determine whether the quantum critical scaling is robust,
or alternatively if universality fails and the antiferromagnetic
transition becomes first order when TN becomes sufficiently
small.

Perhaps the most compelling aspect of the phase diagrams
in Fig. 6 is their potential relationship to the underlying
electronic structure. This has been studied extensively in the
metamagnets, and in CeRu2Si2 magnetic fields are thought to
drive a continuous evolution of the electronic structure from the
B = 0 limit where one of the spin-polarized Fermi surfaces is
favored in field, with the other vanishing at a Lifshitz transition
at the metamagnetic field.67 In contrast to this case in which
the electrons are always delocalized, a rather different situation
is realized in the heavy-fermion YbRh2Si2.19 Here the local
moment character of the Yb moments is completely quenched
near a Kondo temperature TK that is well in excess of the Néel
temperature. Consequently, antiferromagnetic order must be
considered to be a collective instability of the fully hybridized
Kondo lattice, and magnetic fields drive a delocalization
transition at the critical field BQCP that is akin to a Mott
transition, increasing the size of the Fermi surface.68 Much
of the B-T phase diagram is affected by this transition, which
coincides at T = 0 with the antiferromagnetic quantum critical
point in pure YbRh2Si2,10 but remains a separate transition
under Co and Ir doping.20 In contrast, the antiferromagnetic
order that is found at the Néel temperature TN in Yb3Pt4
at zero field involves well-localized Yb moments that are
essentially unaffected by the Kondo effect, which we conclude
occurs below a characteristic temperature TK that is smaller
than the ordering temperature itself, i.e., TK � TN .21,23 The
antiferromagnetic order is conventional, with a staggered Yb
moment that is consistent with a doublet ground state23 and
with spin waves that result from the exchange splitting of this
state of the crystal electric field manifold.22 It is tempting
indeed to speculate that the very different natures of the
Yb magnetism in YbRh2Si2 and Yb3Pt4 may be responsible
for their very different antiferromagnetic phase diagrams,
represented in Figs. 6(a) and 6(c), respectively. Lacking a
more comprehensive set of well-characterized compounds
with vanishing Néel temperatures, this association remains
for now unproven.

To conclude, we have used measurements of the specific
heat, magnetization, neutron diffraction, and magnetocaloric
effect to establish the field-temperature phase diagram of
the heavy-fermion antiferromagnet Yb3Pt4. The antiferro-
magnetic transition is initially continuous in zero field, but
magnetic fields applied in the easy ab plane reduce the
Néel temperature in Yb3Pt4 to zero temperature at a critical
field � 1.85 T. The antiferromagnetic phase line becomes
very steep at low temperatures, and within the accuracy of
our measurements becomes independent of field as TN → 0.
The appearance of the phase line is suggestive that the
antiferromagnetic transition in Yb3Pt4 becomes first order,
however magnetocaloric effect measurements find no evidence
for a latent heat for any value of TN . We conclude that the
antiferromagnetic transition in Yb3Pt4 is continuous, at least
for TN > 0. A step in the moment is observed at the critical
field in both magnetization and magnetic neutron diffraction
measurements, and the associated susceptibility χ = dM/dB

at the critical B initially increases with decreasing temperature,
i.e., χ ∼ T −1/2, signifying that the step width is decreasing.
However, the incipient divergence in χ is cut off below
�0.35 K, a behavior familiar from metamagnetic systems
such as CeRu2Si2 and Sr3Ru2O7. Accordingly, we propose
that the low-temperature properties of Yb3Pt4 are controlled
by the quantum critical end point that is created when the
antiferromagnetic phase line terminates at zero temperature.
These measurements position Yb3Pt4 as one of the few anti-
ferromagnets from the heavy-fermion class that do not seem to
have true quantum critical points, formed when a second-order
phase transition is suppressed to zero temperature by magnetic
field tuning. The field temperature magnetic phase diagram of
Yb3Pt4 seems to form a link between those of most field-tuned
heavy fermions, which are dominated by a quantum critical
point, and those of conventional magnetic insulators, where
the central features are a tricritical point and a line of first-order
transitions terminating in a quantum critical end point.
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Nature (London) 424, 524 (2003).

20S. Friedemann, T. Westerkamp, M. Brando, N. Oeschler, and
S. Wirth, Nat. Phys. 5, 465 (2009).

21M. C. Bennett, P. Khalifah, D. A. Sokolov, W. J. Gannon, Y. Yiu,
M. S. Kim, C. Henderson, and M. C. Aronson, J. Magn. Magn.
Mater. 321, 2021 (2009).

22M. C. Aronson, M. S. Kim, M. C. Bennett, Y. Janssen, D. A.
Sokolov, and L. Wu, J. Low Temp. Phys. 161, 98 (2010).

23Y. Janssen, M. S. Kim, K. S. Park, L. S. Wu, C. Marques, M. C.
Bennett, Y. Chen, J. Li, Q. Huang, J. W. Lynn, and M. C. Aronson,
Phys. Rev. B 81, 064401 (2010).

24Quantum Design Application Note, 1084-701.
25A. Cavallini, B. Fraboni, F. Capotondi, L. Sorba, and G. Biasiol,

Microelectron. Engin. 73-74, 954 (2004).
26A. Candini, G. C. Gazzadi, A. di Bona, D. Ercolani, G. Biasiol,

L. Sorba, and M. Affronte, Nanotechnology 17, 2105
(2006).

27A. Palenzona, J. Less-Common Met. 53, 133 (1977).
28B. R. Gopal, R. Chahine, and T. K. Bose, Rev. Sci. Instrum. 68,

1818 (1997).
29A. M. Tishin, in Handbook on Magnetic Materials, edited by K. H.

J. Buschow, Vol. 12 (North-Holland, Amsterdam, 1999), p. 395.
30V. K. Pecharsky, and K. A. Gschneidner, J. Magn. Magn. Mater.

200, 44 (1999).
31V. K. Pecharsky, K. A. Gschneidner Jr., A. O. Pecharsky, and

A. M. Tishin, Phys. Rev. B 64, 144406 (2001).
32A. A. Aczel, Y. Kohama, C. Marcenat, F. Weickert, M. Jaime,

O. E. Ayala-Valenzuela, R. D. McDonald, S. D. Selesnic,
H. A. Dabkowska, and G. M. Luke, Phys. Rev. Lett. 103, 207203
(2009).

33M. Jaime, K. H. Kim, G. Jorge, S. McCall, and J. A. Mydosh, Phys.
Rev. Lett. 89, 287201 (2002).

34A. V. Silhanek, M. Jaime, N. Harrison, V. R. Fanelli, C. D. Batista,
H. Amitsuka, S. Nakatsuji, L. Balicas, K. H. Kim, Z. Fisk, J. L.
Sarrao, L. Civale, and J. A. Mydosh, Phys. Rev. Lett. 96, 136403
(2006).

35A. Bianchi, R. Movshovich, N. Oeschler, P. Gegenwart, F. Steglich,
J. D. Thompson, P. G. Pagliuso, and J. L. Sarrao, Phys. Rev. Lett.
89, 137002 (2002).

36V. S. Zapf, D. Zocco, B. R. Hansen, M. Jaime, N. Harrison,
C. D. Batista, M. Kenzelmann, C. Niedermayer, A. Lacerda, and
A. Paduan-Filho, Phys. Rev. Lett. 96, 077204 (2006).

37Y. Tokiwa and P. Gegenwart, Rev. Sci. Instrum. 82, 013905
(2011).

38A. W. Rost, R. S. Perry, J. F. Mercure, A. P. Mackenzie, and S. A.
Grigera, Science 325, 1360 (2009).

39E. Morosan, S. L. Bud’ko, Y. A. Mozharivskyj, and P. C. Canfield,
Phys. Rev. B 73, 174432 (2006).

40A. V. Silhanek, T. Ebihara, N. Harrison, M. Jaime, K. Tezuka,
V. Fanelli, and C. D. Batista, Phys. Rev. Lett. 96, 206401 (2006).

41P. Gegenwart, J. Custers, Y. Tokiwa, C. Geibel, and F. Steglich,
Phys. Rev. Lett. 94, 076402 (2005).

42L. Zhu, M. Garst, A. Rosch, and Q. Si, Phys. Rev. Lett. 91, 066404
(2003).

43R. Küchler, N. Oeschler, P. Gegenwart, T. Cichorek, K. Neumaier,
O. Tegus, C. Geibel, J. A. Mydosh, F. Steglich, L. Zhu, and Q. Si,
Phys. Rev. Lett. 91, 066405 (2003).

44E. Stryjewski and N. Giordano, Adv. Phys. 26, 487 (1977).
45R. J. Birgenau, W. B. Yelon, E. Cohen, and J. Makovsky, Phys. Rev.

B 5, 2607 (1972).
46J. F. Dillon, E. Y. Chen, and H. J. Guggenheim, Phys. Rev. B 18,

377 (1978).
47M. Blume, L. M. Corliss, J. M. Hastings, and E. Schiller, Phys. Rev.

Lett. 32, 544 (1974).
48N. Giordano, Phys. Rev. B 14, 2927 (1976).
49H. T. Shang and M. B. Salamon, J. Magn. Magn. Mater. 15–18, 419

(1980).
50C. Pfleiderer, J. Phys. Condens. Matter 17, S987 (2005).
51V. Tafour, A. Villaume, D. Aoki, G. Knebel, and J. Flouquet,

J. Phys.: Conf. Ser. 273, 012017 (2011).
52M. S. Kim, M. C. Bennett, D. Sokolov, M. C. Aronson, J. N.

Millican, J. Y. Chan, Q. Huang, Y. Chen, and J. W. Lynn, Phys.
Rev. B 74, 224431 (2006).

53W. Knafo, D. Aoki, D. Vignolles, B. Vignolle, Y. Klein, C. Jaudet,
A. Villaume, C. Proust, and J. Flouquet, Phys. Rev. B 81. 094403
(2010).

54M. A. Avila, M. Sera, and T. Takabatake, Phys. Rev. B 70, 100409
(2004).

55S. L. Budko, P. C. Canfield, M. A. Avila, and T. Takabatake, Phys.
Rev. B 75, 094433 (2007).

56E. D. Mun, S. L. Budko, A. Kreyssig, and P. C. Canfield, Phys. Rev.
B 82, 054424 (2010).

57F. Weickert, M. Brando, F. Steglich, P. Gegenwart, and M. Garst,
Phys. Rev. B 81, 134438 (2010).

58J. Flouquet, P. Haen, S. Raymond, D. Aoki, and G. Knebel, Physica
B 319, 251 (2002).

59S. A. Grigera, R. S. Perry, A. J. Schofield, M. Chiao, S. R. Julian,
G. G. Lonzarich, S. I. Ikeda, Y. Maeno, A. J. Millis, and A. P.
Mackenzie, Science 294, 1063539 (2001).

60J. Rossat-Mignod, J. M. Effantin, P. Burlet, T. Chattopadhyay,
L. P. Regnault, H. Bartholin, C. Vettier, O. Vogt, D. Ravot, and
J. C. Achart, J. Magn. Magn. Mater. 52, 111 (1985).

61F. S. Tautz, S. R. Julian, G. J. McMullen, and G. G. Lonzarich,
Physica B 206-207, 29 (1995).

62J. Flouquet, S. Kambe, L. P. Regnault, P. Haen, J. P. Brison,
F. Lapierre, and P. Lejay, Physica B 215, 77 (1995).

63W. Wu, A. McCollam, S. A. Grigera, R. S. Perry, A. P. Mackenzie,
and S. R. Julian, Phys. Rev. B 83, 045106 (2011).

134409-8

http://dx.doi.org/10.1038/nphys892
http://dx.doi.org/10.1088/0953-8984/22/16/164202
http://dx.doi.org/10.1088/0953-8984/22/16/164202
http://dx.doi.org/10.1103/PhysRevB.63.054529
http://dx.doi.org/10.1103/PhysRevB.63.054529
http://dx.doi.org/10.1103/PhysRevLett.94.247205
http://dx.doi.org/10.1103/PhysRevLett.94.247205
http://dx.doi.org/10.1103/PhysRevLett.96.116404
http://dx.doi.org/10.1103/PhysRevLett.96.116404
http://dx.doi.org/10.1103/PhysRevLett.93.256404
http://dx.doi.org/10.1103/PhysRevLett.93.256404
http://dx.doi.org/10.1103/PhysRevB.63.134411
http://dx.doi.org/10.1103/PhysRevB.71.184429
http://dx.doi.org/10.1103/PhysRevB.81.174413
http://dx.doi.org/10.1103/PhysRevB.81.174413
http://dx.doi.org/10.1038/nature01774
http://dx.doi.org/10.1038/nphys1299
http://dx.doi.org/10.1016/j.jmmm.2009.01.029
http://dx.doi.org/10.1016/j.jmmm.2009.01.029
http://dx.doi.org/10.1007/s10909-010-0203-6
http://dx.doi.org/10.1103/PhysRevB.81.064401
http://dx.doi.org/10.1016/S0167-9317(04)00250-3
http://dx.doi.org/10.1088/0957-4484/17/9/005
http://dx.doi.org/10.1088/0957-4484/17/9/005
http://dx.doi.org/10.1016/0022-5088(77)90163-1
http://dx.doi.org/10.1063/1.1147999
http://dx.doi.org/10.1063/1.1147999
http://dx.doi.org/10.1016/S0304-8853(99)00397-2
http://dx.doi.org/10.1016/S0304-8853(99)00397-2
http://dx.doi.org/10.1103/PhysRevB.64.144406
http://dx.doi.org/10.1103/PhysRevLett.103.207203
http://dx.doi.org/10.1103/PhysRevLett.103.207203
http://dx.doi.org/10.1103/PhysRevLett.89.287201
http://dx.doi.org/10.1103/PhysRevLett.89.287201
http://dx.doi.org/10.1103/PhysRevLett.96.206401
http://dx.doi.org/10.1103/PhysRevLett.96.206401
http://dx.doi.org/10.1103/PhysRevLett.89.137002
http://dx.doi.org/10.1103/PhysRevLett.89.137002
http://dx.doi.org/10.1103/PhysRevLett.96.077204
http://dx.doi.org/10.1063/1.3529433
http://dx.doi.org/10.1063/1.3529433
http://dx.doi.org/10.1126/science.1176627
http://dx.doi.org/10.1103/PhysRevB.73.174432
http://dx.doi.org/10.1103/PhysRevLett.96.206401
http://dx.doi.org/10.1103/PhysRevLett.94.076402
http://dx.doi.org/10.1103/PhysRevLett.91.066404
http://dx.doi.org/10.1103/PhysRevLett.91.066404
http://dx.doi.org/10.1103/PhysRevLett.91.066405
http://dx.doi.org/10.1080/00018737700101433
http://dx.doi.org/10.1103/PhysRevB.5.2607
http://dx.doi.org/10.1103/PhysRevB.5.2607
http://dx.doi.org/10.1103/PhysRevB.18.377
http://dx.doi.org/10.1103/PhysRevB.18.377
http://dx.doi.org/10.1103/PhysRevLett.32.544
http://dx.doi.org/10.1103/PhysRevLett.32.544
http://dx.doi.org/10.1103/PhysRevB.14.2927
http://dx.doi.org/10.1016/0304-8853(80)91113-0
http://dx.doi.org/10.1016/0304-8853(80)91113-0
http://dx.doi.org/10.1088/0953-8984/17/11/031
http://dx.doi.org/10.1088/1742-6596/273/1/012017
http://dx.doi.org/10.1103/PhysRevB.74.224431
http://dx.doi.org/10.1103/PhysRevB.74.224431
http://dx.doi.org/10.1103/PhysRevB.81.094403
http://dx.doi.org/10.1103/PhysRevB.81.094403
http://dx.doi.org/10.1103/PhysRevB.70.100409
http://dx.doi.org/10.1103/PhysRevB.70.100409
http://dx.doi.org/10.1103/PhysRevB.75.094433
http://dx.doi.org/10.1103/PhysRevB.75.094433
http://dx.doi.org/10.1103/PhysRevB.82.054424
http://dx.doi.org/10.1103/PhysRevB.82.054424
http://dx.doi.org/10.1103/PhysRevB.81.134438
http://dx.doi.org/10.1016/S0921-4526(02)01126-2
http://dx.doi.org/10.1016/S0921-4526(02)01126-2
http://dx.doi.org/10.1126/science.1063539
http://dx.doi.org/10.1016/0304-8853(85)90235-5
http://dx.doi.org/10.1016/0921-4526(94)00359-4
http://dx.doi.org/10.1016/0921-4526(95)00028-8
http://dx.doi.org/10.1103/PhysRevB.83.045106


MAGNETIC FIELD TUNING OF ANTIFERROMAGNETIC Yb . . . PHYSICAL REVIEW B 84, 134409 (2011)

64J. Paglione, M. A. Tanatar, D. G. Hawthorn, E. Boaknin, R. W.
Hill, F. Ronning, M. Sutherland, L. Taillefer, C. Petrovic, and P. C.
Canfield, Phys. Rev. Lett. 91, 246405 (2003).

65T. Park, Y. Tokiwa, E. D. Bauer, F. Ronning, R. Movshovich,
J. L. Sarrao, and J. D. Thompson, Physica B 403, 943
(2008).

66O. Stockert, J. Arndt, E. Faulhaber, C. Geibel, H. S. Jeevan,
S. Kirchner, M. Loenwwenhaupt, K. Schmalzl, W. Schmidt,
Q. Si, and F. Steglich, Nat. Phys. 7, 119 (2011).

67R. Daou, C. Bergemann, and S. R. Julian, Phys. Rev. Lett. 96,
026401 (2006).

68Q. Si and F. Steglich, Science 329, 1161 (2010).

134409-9

http://dx.doi.org/10.1103/PhysRevLett.91.246405
http://dx.doi.org/10.1016/j.physb.2007.10.272
http://dx.doi.org/10.1016/j.physb.2007.10.272
http://dx.doi.org/10.1038/nphys1852
http://dx.doi.org/10.1103/PhysRevLett.96.026401
http://dx.doi.org/10.1103/PhysRevLett.96.026401
http://dx.doi.org/10.1126/science.1191195

