81 research outputs found
TensorQuant - A Simulation Toolbox for Deep Neural Network Quantization
Recent research implies that training and inference of deep neural networks
(DNN) can be computed with low precision numerical representations of the
training/test data, weights and gradients without a general loss in accuracy.
The benefit of such compact representations is twofold: they allow a
significant reduction of the communication bottleneck in distributed DNN
training and faster neural network implementations on hardware accelerators
like FPGAs. Several quantization methods have been proposed to map the original
32-bit floating point problem to low-bit representations. While most related
publications validate the proposed approach on a single DNN topology, it
appears to be evident, that the optimal choice of the quantization method and
number of coding bits is topology dependent. To this end, there is no general
theory available, which would allow users to derive the optimal quantization
during the design of a DNN topology. In this paper, we present a quantization
tool box for the TensorFlow framework. TensorQuant allows a transparent
quantization simulation of existing DNN topologies during training and
inference. TensorQuant supports generic quantization methods and allows
experimental evaluation of the impact of the quantization on single layers as
well as on the full topology. In a first series of experiments with
TensorQuant, we show an analysis of fix-point quantizations of popular CNN
topologies
Identification of herbal teas and their compounds eliciting antiviral activity against SARS-CoV-2 in vitro
Background: The SARS-CoV-2/COVID-19 pandemic has inflicted medical and socioeconomic havoc, and despite the current availability of vaccines and broad implementation of vaccination programs, more easily accessible and cost-effective acute treatment options preventing morbidity and mortality are urgently needed. Herbal teas have historically and recurrently been applied as self-medication for prophylaxis, therapy, and symptom alleviation in diverse diseases, including those caused by respiratory viruses, and have provided sources of natural products as basis for the development of therapeutic agents. To identify affordable, ubiquitously available, and effective treatments, we tested herbs consumed worldwide as herbal teas regarding their antiviral activity against SARS-CoV-2. Results: Aqueous infusions prepared by boiling leaves of the Lamiaceae perilla and sage elicit potent and sustained antiviral activity against SARS-CoV-2 when applied after infection as well as prior to infection of cells. The herbal infusions exerted in vitro antiviral effects comparable to interferon-β and remdesivir but outperformed convalescent sera and interferon-α2 upon short-term treatment early after infection. Based on protein fractionation analyses, we identified caffeic acid, perilla aldehyde, and perillyl alcohol as antiviral compounds. Global mass spectrometry (MS) analyses performed comparatively in two different cell culture infection models revealed changes of the proteome upon treatment with herbal infusions and provided insights into the mode of action. As inferred by the MS data, induction of heme oxygenase 1 (HMOX-1) was confirmed as effector mechanism by the antiviral activity of the HMOX-1-inducing compounds sulforaphane and fraxetin. Conclusions: In conclusion, herbal teas based on perilla and sage exhibit antiviral activity against SARS-CoV-2 including variants of concern such as Alpha, Beta, Delta, and Omicron, and we identified HMOX-1 as potential therapeutic target. Given that perilla and sage have been suggested as treatment options for various diseases, our dataset may constitute a valuable resource also for future research beyond virology
Symbiotic Legume Nodules Employ Both Rhizobial Exo- and Endo-Hydrogenases to Recycle Hydrogen Produced by Nitrogen Fixation
BACKGROUND: In symbiotic legume nodules, endosymbiotic rhizobia (bacteroids) fix atmospheric N(2), an ATP-dependent catalytic process yielding stoichiometric ammonium and hydrogen gas (H(2)). While in most legume nodules this H(2) is quantitatively evolved, which loss drains metabolic energy, certain bacteroid strains employ uptake hydrogenase activity and thus evolve little or no H(2). Rather, endogenous H(2) is efficiently respired at the expense of O(2), driving oxidative phosphorylation, recouping ATP used for H(2) production, and increasing the efficiency of symbiotic nodule N(2) fixation. In many ensuing investigations since its discovery as a physiological process, bacteroid uptake hydrogenase activity has been presumed a single entity. METHODOLOGY/PRINCIPAL FINDINGS: Azorhizobium caulinodans, the nodule endosymbiont of Sesbania rostrata stems and roots, possesses both orthodox respiratory (exo-)hydrogenase and novel (endo-)hydrogenase activities. These two respiratory hydrogenases are structurally quite distinct and encoded by disparate, unlinked gene-sets. As shown here, in S. rostrata symbiotic nodules, haploid A. caulinodans bacteroids carrying single knockout alleles in either exo- or-endo-hydrogenase structural genes, like the wild-type parent, evolve no detectable H(2) and thus are fully competent for endogenous H(2) recycling. Whereas, nodules formed with A. caulinodans exo-, endo-hydrogenase double-mutants evolve endogenous H(2) quantitatively and thus suffer complete loss of H(2) recycling capability. More generally, from bioinformatic analyses, diazotrophic microaerophiles, including rhizobia, which respire H(2) may carry both exo- and endo-hydrogenase gene-sets. CONCLUSIONS/SIGNIFICANCE: In symbiotic S. rostrata nodules, A. caulinodans bacteroids can use either respiratory hydrogenase to recycle endogenous H(2) produced by N(2) fixation. Thus, H(2) recycling by symbiotic legume nodules may involve multiple respiratory hydrogenases
On impact and volcanism across the Cretaceous-Paleogene boundary
The cause of the end-Cretaceous mass extinction is vigorously debated, owing to the occurrence of a very large bolide impact and flood basalt volcanism near the boundary. Disentangling their relative importance is complicated by uncertainty regarding kill mechanisms and the relative timing of volcanogenic outgassing, impact, and extinction. We used carbon cycle modeling and paleotemperature records to constrain the timing of volcanogenic outgassing. We found support for major outgassing beginning and ending distinctly before the impact, with only the impact coinciding with mass extinction and biologically amplified carbon cycle change. Our models show that these extinction-related carbon cycle changes would have allowed the ocean to absorb massive amounts of carbon dioxide, thus limiting the global warming otherwise expected from postextinction volcanism
Impairment of angiogenesis by fatty acid synthase inhibition Involves mTOR malonylation
The role of fatty acid synthesis in endothelial cells (ECs) remains incompletely characterized. We report that fatty acid synthase knockdown (FASNKD) in ECs impedes vessel sprouting by reducing proliferation. Endothelial loss of FASN impaired angiogenesis in vivo, while FASN blockade reduced pathological ocular neovascularization, at >10-fold lower doses than used for anti-cancer treatment. Impaired angiogenesis was not due to energy stress, redox imbalance, or palmitate depletion. Rather, FASNKD elevated malonyl-CoA levels, causing malonylation (a post-translational modification) of mTOR at lysine 1218 (K1218). mTOR K-1218 malonylation impaired mTOR complex 1 (mTORC1) kinase activity, thereby reducing phosphorylation of downstream targets (p70S6K/4EBP1). Silencing acetyl-CoA carboxylase 1 (an enzyme producing malonyl-CoA) normalized malonyl-CoA levels and reactivated mTOR in FASNKD ECs. Mutagenesis unveiled the importance of mTOR K1218 malonylation for angiogenesis. This study unveils a novel role of FASN in metabolite signaling that contributes to explaining the anti-angiogenic effect of FASN blockade
Research infrastructure and organization structure of Center of Space Technologies in the Institute of Aviation
Przedstawiono infrastrukturę badawczą oraz strukturę organizacyjną Centrum Technologii Kosmicznych Instytutu Lotnictwa. Centrum Technologii Kosmicznych w obecnym składzie składa się z czterech zakładów merytorycznych. Omówione zostały kierunki rozwoju poszczególnych zakładów a także pokazana została tematyka prac realizowanych przez szereg laboratoriów wchodzących w skład zakładów. Przedstawiona infrastruktura organizacyjna Centrum Technologii Kosmicznych pozwala na podejmowanie realizacji zadań zarówno w projektach badawczych międzynarodowych jak i w warunkach krajowych.This article contains the description of the research facilities and the organizational structure of the Center of Space Technologies. This Center consists of four independent research divisions
in the field of aerospace technologies. The trends and the facing challenges for the new divisions of the Center of Space Technologies in the development of advanced technologies are described. All laboratories and their list of competences are also included. The described organizational structure and research profile of the Center of Space Technologies allows to strongly cooperate with the foreign and national customers in the frame of many contracts and projects
- …