549 research outputs found

    Sub-Pixel Response Measurement of Near-Infrared Sensors

    Get PDF
    Wide-field survey instruments are used to efficiently observe large regions of the sky. To achieve the necessary field of view, and to provide a higher signal-to-noise ratio for faint sources, many modern instruments are undersampled. However, precision photometry with undersampled imagers requires a detailed understanding of the sensitivity variations on a scale much smaller than a pixel. To address this, a near-infrared spot projection system has been developed to precisely characterize near-infrared focal plane arrays and to study the effect of sub-pixel non uniformity on precision photometry. Measurements of large format near-infrared detectors demonstrate the power of this system for understanding sub-pixel response.Comment: 9 pages, 13 figures, submitted to PAS

    Seamless optimization of the GEMM kernel for task-based programming models

    Get PDF
    The general matrix-matrix multiplication (GEMM) kernel is a fundamental building block of many scientific applications. Many libraries such as Intel MKL and BLIS provide highly optimized sequential and parallel versions of this kernel. The parallel implementations of the GEMM kernel rely on the well-known fork-join execution model to exploit multi-core systems efficiently. However, these implementations are not well suited for task-based applications as they break the data-flow execution model. In this paper, we present a task-based implementation of the GEMM kernel that can be seamlessly leveraged by task-based applications while providing better performance than the fork-join version. Our implementation leverages several advanced features of the OmpSs-2 programming model and a new heuristic to select the best parallelization strategy and blocking parameters based on the matrix and hardware characteristics. When evaluating the performance and energy consumption on two modern multi-core systems, we show that our implementations provide significant performance improvements over an optimized OpenMP fork-join implementation, and can beat vendor implementations of the GEMM (e.g., Intel MKL and AMD AOCL). We also demonstrate that a real application can leverage our optimized task-based implementation to enhance performance.Peer ReviewedPostprint (author's final draft

    Near infrared detectors for SNAP

    Full text link
    Large format (1k x 1k and 2k x 2k) near infrared detectors manufactured by Rockwell Scientific Center and Raytheon Vision Systems are characterized as part of the near infrared R&D effort for SNAP (the Super-Nova/Acceleration Probe). These are hybridized HgCdTe focal plane arrays with a sharp high wavelength cut-off at 1.7 um. This cut-off provides a sufficiently deep reach in redshift while it allows at the same time low dark current operation of the passively cooled detectors at 140 K. Here the baseline SNAP near infrared system is briefly described and the science driven requirements for the near infrared detectors are summarized. A few results obtained during the testing of engineering grade near infrared devices procured for the SNAP project are highlighted. In particular some recent measurements that target correlated noise between adjacent detector pixels due to capacitive coupling and the response uniformity within individual detector pixels are discussed

    Wearable robotic exoskeleton for overground gait training in sub-acute and chronic hemiparetic stroke patients: preliminary results

    Get PDF
    BACKGROUND: Recovery of therapeutic or functional ambulatory capacity in post-stroke patients is a primary goal of rehabilitation. Wearable powered exoskeletons allow patients with gait dysfunctions to perform over-ground gait training, even immediately after the acute event.AIM: To investigate the feasibility and the clinical effects of an over-ground walking training with a wearable powered exoskeleton in sub-acute and chronic stroke patients.DESIGN: Prospective, pilot pre-post, open label, non-randomized experimental study.SETTING: A single neurological rehabilitation center for inpatients and outpatients.POPULATION: Twenty-three post-stroke patients were enrolled: 12 sub-acute (mean age: 43.8\ub113.3 years, 5 male and 7 female, 7 right hemiparesis and 5 left hemiparesis) and 11 chronic (mean age: 55.5\ub115.9 years, 7 male and 4 female, 4 right hemiparesis and 7 left hemiparesis) patients.METHODS: Patients underwent 12 sessions (60 min/session, 3 times/week) of walking rehabilitation training using Ekso\u2122, a wearable bionic suit that enables individuals with lower extremity disabilities and minimal forearm strength to stand up, sit down and walk over a flat hard surface with a full weight-bearing reciprocal gait. Clinical evaluations were performed at the beginning of the training period (t0), after 6 sessions (t1) and after 12 sessions (t2) and were based on the Ashworth scale, Motricity Index, Trunk Control Test, Functional Ambulation Scale, 10-Meter Walking Test, 6-Minute Walking Test, and Walking Handicap Scale. Wilcoxon's test (P<0.05) was used to detect significant changes.RESULTS: Statistically significant improvements were observed at the three assessment periods for both groups in Motricity Index, Functional Ambulation Scale, 10-meter walking test, and 6-minute walking test. Sub-acute patients achieved statistically significant improvement in Trunk Control Test and Walking Handicap Scale at t0-t2. Sub-acute and chronic patient did not achieve significant improvement in Ashworth scale at t0-t2.CONCLUSIONS: Twelve sessions of over-ground gait training using a powered wearable robotic exoskeleton improved ambulatory functions in sub-acute and chronic post-stroke patients. Large, randomized multicenter studies are needed to confirm these preliminary data.CLINICAL REHABILITATION IMPACT: To plan a completely new individual tailored robotic rehabilitation strategy after stroke, including task-oriented over-ground gait training

    Updated Report Acceleration of Polarized Protons to 120-150 GeV/c at Fermilab

    Full text link
    The SPIN@FERMI collaboration has updated its 1991-95 Reports on the acceleration of polarized protons in Fermilab's Main Injector, which was commissioned by Fermilab. This Updated Report summarizes some updated Physics Goals for a 120-150 GeV/c polarized proton beam. It also contains an updated discussion of the Modifications and Hardware needed for a polarized beam in the Main Injector, along with an updated Schedule and Budget.Comment: 30 pages, 12 figure

    Weak Lensing from Space I: Instrumentation and Survey Strategy

    Full text link
    A wide field space-based imaging telescope is necessary to fully exploit the technique of observing dark matter via weak gravitational lensing. This first paper in a three part series outlines the survey strategies and relevant instrumental parameters for such a mission. As a concrete example of hardware design, we consider the proposed Supernova/Acceleration Probe (SNAP). Using SNAP engineering models, we quantify the major contributions to this telescope's Point Spread Function (PSF). These PSF contributions are relevant to any similar wide field space telescope. We further show that the PSF of SNAP or a similar telescope will be smaller than current ground-based PSFs, and more isotropic and stable over time than the PSF of the Hubble Space Telescope. We outline survey strategies for two different regimes - a ``wide'' 300 square degree survey and a ``deep'' 15 square degree survey that will accomplish various weak lensing goals including statistical studies and dark matter mapping.Comment: 25 pages, 8 figures, 1 table, replaced with Published Versio
    • …
    corecore