
Seamless Optimization of the GEMM Kernel for Task-based
Programming Models

Arthur F. Lorenzon
aflorenzon@unipampa.edu.br
Federal University of Pampa

Alegrete, RS, Brazil

Sandro M. V. N. Marques
sandromarques.aluno@unipampa.edu.br

Federal University of Pampa
Alegrete, RS, Brazil

Antoni Navarro
antoni.navarro@bsc.es

Barcelona Supercomputing Center (BSC)
Barcelona, Spain

Vicenç Beltran
vbeltran@bsc.es

Barcelona Supercomputing Center (BSC)
Barcelona, Spain

ABSTRACT
The general matrix-matrix multiplication (GEMM) kernel is a fun-
damental building block of many scientific applications. Many
libraries such as Intel MKL and BLIS provide highly optimized
sequential and parallel versions of this kernel. The parallel imple-
mentations of the GEMM kernel rely on the well-known fork-join
execution model to exploit multi-core systems efficiently. However,
these implementations are not well suited for task-based applica-
tions as they break the data-flow execution model. In this paper, we
present a task-based implementation of the GEMM kernel that can
be seamlessly leveraged by task-based applications while providing
better performance than the fork-join version. Our implementation
leverages several advanced features of the OmpSs-2 programming
model and a new heuristic to select the best parallelization strat-
egy and blocking parameters based on the matrix and hardware
characteristics. When evaluating the performance and energy con-
sumption on two modern multi-core systems, we show that our
implementations provide significant performance improvements
over an optimized OpenMP fork-join implementation, and can beat
vendor implementations of the GEMM (e.g., Intel MKL and AMD
AOCL). We also demonstrate that a real application can leverage
our optimized task-based implementation to enhance performance.

CCS CONCEPTS
•Computingmethodologies→Massively parallel algorithms;
• Theory of computation→ Parallel computing models.

KEYWORDS
GEMM, Malleability, Parallel Computing, Energy-efficiency

1 INTRODUCTION
Many applications from traditional and emerging domains rely on
the Basic Linear Algebra Subprograms (BLAS [9]) library to exploit
multi-core systems. Among the routines implemented by BLAS, the
general matrix-matrix multiplication (GEMM) is widely employed
by machine learning algorithms, climate models, and applications
used to rank the systems on the Top500 list of the fastest supercom-
puters in the world (e.g., High-Performance Linpack Benchmark
– HPL). As a consequence, different GEMM optimized implemen-
tations for a given underlying hardware have been proposed, e.g.,

Intel MKL [1], AMDCore Math Library [2], OpenBLAS [34], ATLAS
[9], and BLIS [33].

These high-performance libraries are usually parallelized follow-
ing the fork-join paradigm (e.g., OpenMP parallel for), providing
significant performance improvements compared to the sequen-
tial GEMM-BLAS implementation on multi-core systems. However,
their rigid execution model and lack of malleability may not deal
with some hardware and software aspects (e.g., data synchroniza-
tion and cache contention) when there is variability in the applica-
tion behavior or execution environment, preventing linear improve-
ments. When scenarios like these arise, the rigid fork-join-based
GEMM implementations can increase the energy consumption and
execution time. Task-based programming models can overcome
some of the fork-join limitations providing more malleability and
better load-balancing on multi-core systems.

However, there is no optimized implementation of the GEMM
routine with task-based models available to the best of our knowl-
edge. Hence, to develop a parallel application that requires a high-
performance GEMM implementation (e.g., Cholesky decomposi-
tion), software developers have the following options: (i) The entire
application is forced to use the fork-join model that is optimized for
performance but does not present malleability. (ii) The application
is parallelized with tasks, but the GEMM kernel is limited to sequen-
tial versions, discarding an optimized parallel version’s potential
benefits (e.g., panel reuse between cores). Finally (iii), combining
a task-based application with a GEMM kernel that is parallelized
using the fork-join model. However, this last option usually results
in the worst performance due to the oversubscription effects be-
tween the tasking and fork-join runtimes. This highlights the need
for an optimized task-based implementation, benefiting high-level
frameworks with a more performant and dynamic implementation.

With that in mind, we propose two highly optimized task-based
implementations that leverage advanced features from the OmpSs-2
programming model (discussed in Section 2). The former imple-
mentation uses the taskloop[21] construct with support for data
dependencies, which eliminates the need for coarse-grained syn-
chronization. The second implementation extends the previous one
with the task for [20] clause, which provides the best of both
tasks and fork-join execution models, work-sharing tasks. Both
implementations have been integrated into BLIS [33], a software
framework that allows programmers and vendors to instantiate
high-performance libraries with BLAS functionalities. With that,

The final publication is available at ACM via http://dx.doi.org/10.1145/3524059.3532385

https://orcid.org/
https://orcid.org/
https://orcid.org/

Lorenzon et al.

end-users can take advantage of the malleability leveraged by our
implementations and transparently employ it in a wide variety of
linear algebra methods.

Simultaneously, as shown in our work, finding adequate task
granularities becomes critical to yield competitive performance:
an excessive number of fine-grained tasks will increase task over-
heads, but too few coarse-grained tasks will hinder the available
parallelism. Therefore, to not burden the software developer with
dealing with this challenging task and offer more malleability to
the applications, we propose a heuristic to automatically and trans-
parently select the adequate task granularity that works at runtime
and without the need for a training phase. In a nutshell, this work
presents the following contributions:

• A generic task-based implementation of the GEMM rou-
tine that can be implemented with any task-based parallel
programming interface;

• Two task-based implementations that leverage advanced
features offered by the OmpSs-2 programming model; and

• Aheuristic to automatically define the parallelization scheme
and parameters (e.g., block size, task granularity, and work-
load distribution) at runtime, namely ASOC (automatically
selection of optimal configurations).

We validate the contributions of our work through an extensive
set of experiments on two modern high-performance computing
systems (Intel and AMD). When running the GEMM routine over
nineteen different workloads, we show that: (i) By finding an op-
timized configuration (parallelization scheme and parameters), a
task-based implementation can deliver better performance than
BLIS’s optimized OpenMP fork-join implementation. (ii) Leverag-
ing the malleability of the optimized task-based implementations
causes the energy consumption to be reduced compared to the
OpenMP fork-join implementation on the Intel Xeon processor.
(iii) Our final implementation shows that combining tasking and
work-sharing leads to extremely balanced workloads and minimal
runtime overhead. (iv) Our task-based version can reach better
performance and energy results than the optimized vendor’s imple-
mentation of GEMM (e.g., Intel MKL and AMD Optimizing CPU
Libraries – AOCL) for most workloads. On top of that, we have
used the Cholesky decomposition algorithm to illustrate that our
optimized task-based version can be seamlessly integrated with
task-based applications. Our evaluation shows that our optimized
task-based GEMM can significantly improve the performance of
tasks-based algorithms that currently rely on sequential GEMM
kernels.

The remainder of this paper is structured as follows. In Section 2,
we describe the background and motivation of this study. In Section
3, we give a thorough description of the implemented strategies
and the heuristic. Then, in Section 4, we describe the methodology
and discuss the results of our contributions. In Section 5, we discuss
the related work and highlight our contributions. Finally, we draw
the conclusions and future work in Section 6.

2 BACKGROUND AND MOTIVATION
BLIS is a software framework that allows programmers and vendors
to instantiate high-performance libraries with BLAS functionality
[33]. Because of its simplicity and performance, BLIS has been

Algorithm 1 Sequential implementation of GEMM by BLIS
1: for 𝑗𝑐 = 0, ..., n - 1 in steps of 𝑛𝑐 do
2: 𝐵 𝑗𝑐 = 𝐵 + 𝑗𝑐 ∗ 𝑐𝑠𝑏
3: 𝐶 𝑗𝑐 = 𝐶 + 𝑗𝑐 ∗ 𝑐𝑠𝑐
4: for 𝑝𝑐 = 0, ..., k - 1 in steps of 𝑘𝑐 do
5: 𝐴𝑝𝑐 = 𝐴 + 𝑝𝑐 ∗ 𝑐𝑠𝑎
6: 𝐵𝑝𝑐 = 𝐵 𝑗𝑐 + 𝑝𝑐 ∗ 𝑟𝑠𝑏
7: 𝐵̃ = 𝑝𝑎𝑐𝑘 (𝐵𝑝𝑐)
8: for 𝑖𝑐 = 0, ..., m - 1 in steps of 𝑚𝑐 do
9: 𝐴𝑖𝑐 = 𝐴𝑝𝑐 + 𝑖𝑐 ∗ 𝑟𝑠𝑎
10: 𝐶𝑖𝑐 = 𝐶 𝑗𝑐 + 𝑖𝑐 ∗ 𝑟𝑠𝑐
11: 𝐴̃ = 𝑝𝑎𝑐𝑘 (𝐴𝑖𝑐)
12: for 𝑗𝑟 = 0, ..., 𝑛𝑐 - 1 in steps of 𝑛𝑟 do
13: 𝐵 𝑗𝑟 = 𝐵̃ + 𝑗𝑟 ∗ 𝛿𝐵
14: 𝐶 𝑗𝑟 = 𝐶𝑖𝑐 + 𝑗𝑟 ∗ 𝑐𝑠𝑐 ∗ 𝑁𝑅

15: for 𝑖𝑟 = 0, ...,𝑚𝑐 - 1 in steps of 𝑚𝑟 do
16: 𝐴𝑖𝑟 = 𝐴̃ + 𝑖𝑟 ∗ 𝛿𝐴
17: 𝐶𝑖𝑟 = 𝐶 𝑗𝑟 + 𝑖𝑟 ∗ 𝑟𝑠𝑐 ∗𝑀𝑅

18: 𝐶 (𝑖𝑟 : 𝑖𝑟 +𝑚𝑟 − 1, 𝑗𝑟 : 𝑗𝑟 + 𝑛𝑟 − 1)+ = . . .

19: end for
20: end for
21: end for
22: end for
23: end for
24: return𝐶𝑚𝑛

employed in many linear algebra methods, and optimization tools
(e.g., Cholesky factorization, LU Decomposition, and AMD AOCL)
[3, 13]. Furthermore, BLIS provides a highly optimized micro-kernel
to implement the GEMM kernel for each specific micro-architecture.
Hence, we have implemented our task-based versions on top of the
BLIS infrastructure. Next, we describe the GEMM sequential and
parallel fork-join implementations provided by BLIS.

2.1 Sequential Implementation of the GEMM
GEMM can be formalized as 𝐶 = 𝐴 × 𝐵 + 𝐶 , where 𝐴, 𝐵, and
𝐶 are matrices of size𝑚 × 𝑘 , 𝑘 × 𝑛, and𝑚 × 𝑛, respectively. It is
worthmentioning that a BLIS implementation considers all matrices
to be stored in row-major order to improve data locality. Hence,
Algorithm 1 depicts the sequential version of the GEMM operation
while Figure 1 illustrates each step of the algorithm1. In the 𝑗𝑐 loop,
matrices 𝐶 and 𝐵 are divided into column panels of size 𝑛𝑐 . Next,
in the 𝑝𝑐 loop, 𝐴 and the current column panel 𝐵 𝑗𝑐 are partitioned
into column and row panels of size 𝑘𝑐 , respectively. Moreover, BLIS
packs the current row panel of 𝐵𝑘𝑐,𝑗𝑐 into 𝐵̃, a contiguous buffer
in memory. Then in the 𝑖𝑐 loop, 𝐶 𝑗𝑐 and 𝐴𝑝𝑐 are partitioned into
smaller blocks of𝑚𝑐 lines, and 𝐴𝑚𝑐,𝑘𝑐 is packed into a contiguous
buffer 𝐴̃. At this point, to better accommodate data into cache, the
𝑗𝑟 loop partitions both 𝐶𝑖𝑐 and 𝐵̃ into column slivers of width 𝑛𝑟 ,
while the inner-most 𝑖𝑟 loop divides the current block of 𝐴̃ into row
slivers of height𝑚𝑟 . Finally, the micro-kernel multiplies the slivers
of 𝐴̃ by the slivers of 𝐵̃, and updates the𝑚𝑟 × 𝑛𝑟 position of 𝐶𝑖𝑟 .

2.2 Identifying Parallelization Opportunities
When the 𝑖𝑟 loop is parallelized, each created thread computes
multiple instances of the micro-kernel operation. However, as it
has a limited amount of parallelism (i.e., the number of iterations
is defined by 𝑚𝑐

𝑚𝑟
), this loop is only parallelized when the ratio of

𝑚𝑐 and𝑚𝑟 is large enough to overcome the overhead of managing
1𝑐𝑠𝑎 , 𝑐𝑠𝑏 , and 𝑐𝑠𝑐 denote the distance to the next column. 𝑟𝑠𝑎 , 𝑟𝑠𝑏 , and 𝑟𝑠𝑐 denote
the distance to the next row. 𝛿𝐴 and 𝛿𝐵 denote for values computed by the algorithm.

Seamless Optimization of the GEMM Kernel for Task-based Programming Models

the parallelism. By parallelizing the 𝑗𝑟 loop, each created thread
multiplies the 𝐴̃ block with the sliver of 𝐵̃. It also has a limited
amount of iterations, defined by the ratio of 𝑛𝑐 and 𝑛𝑟 . Hence, this
loop is only worthy of parallelization when 𝑛𝑐 is large enough. For
the parallelization of the 𝑖𝑐 loop, each created thread will get a
distinct block of 𝐴̃ and share the same 𝐵̃ among all threads. It is a
potential loop to be parallelized as the number of iterations only
depends on the size of dimension𝑚. If the parallelism is exploited
over the 𝑝𝑐 loop, each thread will be assigned a column panel 𝐵
and a row panel 𝐴. Although the loop presents possibilities of par-
allelism exploitation, it needs a more advanced dependency system
or a barrier, which would likely penalize the entire application’s
performance. Finally, when the outermost loop (indexed by 𝑗𝑐) is
parallelized, each thread will be assigned a different row panel of 𝐵
and 𝐶 , and all threads will share matrix 𝐴. This loop presents the
coarsest granularity that each thread will receive as it depends on
the ratio of 𝑛 and 𝑛𝑐 .

2.3 Parallel Fork-join Implementation
BLIS provides two fork-join parallel implementations of the GEMM
routine, one using OpenMP and the other using POSIX threads.
On both versions the four loops are parallelized (𝑗𝑐 , 𝑖𝑐 , 𝑗𝑟 , and 𝑖𝑟).
OpenMP [25] has a highly optimized fork-join execution model
especially well-suited to exploit structured parallelism. The well-
known omp for construct is commonly used to parallelize em-
barrassingly parallel loops. BLIS’ strategy performs a weighted
partitioning based on the relative length of them and n dimensions.
Then, threads are split between the loops and assigned greedily to a
predefined maximum for each dimension. The parallelization is hi-
erarchical, where the total number of running threads is the product
of the amount of parallelism exploited on each loop. Although the
end-user can tune the degree of parallelism for each loop, the com-
mon practice is defining the total number of threads so that BLIS
can decide the degree of parallelism. It is worth mentioning that
this implementation requires a barrier during the packing panels of
matrices 𝐴 and 𝐵 into contiguous buffers, and after the execution
of the 𝑖𝑐 loop to ensure that different threads do not update the
same position of 𝐶 at the same time (between lines 21 and 22 of
Algorithm 1). This parallel and high-performance implementation
based on OpenMP is well-suited for accelerated applications that
follow a fork-join model. However, it is sub-optimal for task-based
applications following a data-flow execution model. Task-based
applications require a global barrier before and after calling a ker-
nel parallelized using the fork-join model, breaking the data-flow
execution model. Thus, it is essential to develop task-based GEMM
kernels seamlessly integrated with task-based applications.

2.4 Task-based Models & OmpSs-2 Advanced
Features

The flexibility of the data-flow execution model relies on the dy-
namic management of data dependencies among tasks. However,
the management of dependencies comes at a cost, and if done in-
correctly, it may introduce a non-negligible overhead depending on
the number of tasks [7]. Moreover, exploiting dynamic, irregular,
and nested parallelism can become a challenge depending on the

jc loop

nc

kc

nc

pc loop

kc

ic loop

mcmc

Packing

jr loop

Packing

ir loop

C A B

nr
nr

mr mr

Cjc
Bjc

Akc

Figure 1: Illustration of Algorithm 1.

granularity of tasks. To mitigate this problem and widen the par-
allelization opportunities in task-based applications, the OmpSs-2
programming model offers advanced features to exploit multi-core
systems. Moreover, it also provides advanced constructs to enable a
more straightforward parallelization of loops, which transparently
widens the available workload. These features are discussed next.

Weak dependencies[27]: Nesting in tasks requires the specifica-
tion of data dependencies at every nesting level to link the domains
of dependencies and ensure a correct execution order. Nonetheless,
deferring the execution of an outer-level task due to its depen-
dencies may not always be needed. If only inner sub-tasks access
the managed data, the parent task must also specify those data
dependencies, but it is unnecessary to defer its execution. For this
purpose, OmpSs-2 offers the weak counterpart to all the depen-
dency clauses. These variants indicate that a task does not require
enforcing synchronization, but a future nested task will. Due to
this, the execution of the parent task is not deferred and thus can
start beforehand. Transparently, this causes applications to benefit
from having multiple task-creators, which widens the workload
faster and improves application performance.

Taskloop Dependencies[21]: The OpenMP taskloop construct
does not support data dependencies. This leads to the need for a
coarse-grained synchronization mechanism, such as taskwaits,
and these usually translate to adverse effects in performance. To
tackle this issue, OmpSs-2 offers data-dependency clauses within
the taskloop construct. Through the induction variable of loops,
programmers can specify dependencies. More specifically, each par-
tition of the loop will have its dependency, resulting in a data-flow
execution model that avoids the synchronization points imposed
by taskwaits.

Task For[20]: As aforementioned, the two most common par-
allelization strategies are fork-join and task-based. The former ex-
ploits structured parallelism while the latter exploits dynamic, ir-
regular, and nested parallelism. Applications that show both types

Lorenzon et al.

Algorithm 2 Generic task-based implementation of GEMM
1: get(𝑛𝑐𝑝𝑢𝑠)
2: panel_allocation(𝐴̃ [𝑛𝑐𝑝𝑢𝑠])
3: for 𝑗𝑐 = 0, ..., n - 1 in steps of 𝑛𝑐 do
4: 𝐵 𝑗𝑐 = 𝐵 + 𝑗𝑐 ∗ 𝑐𝑠𝑏
5: 𝐶 𝑗𝑐 = 𝐶 + 𝑗𝑐 ∗ 𝑐𝑠𝑐
6: for 𝑝𝑐 = 0, ..., k - 1 in steps of 𝑘𝑐 do
7: 𝐴𝑝𝑐 = 𝐴 + 𝑝𝑐 ∗ 𝑐𝑠𝑎
8: 𝐵𝑝𝑐 = 𝐵 𝑗𝑐 + 𝑝𝑐 ∗ 𝑟𝑠𝑏
9: 𝐵̃ = 𝑝𝑎𝑐𝑘 (𝐵𝑝𝑐)
10: for 𝑖𝑐 = 0, ..., m - 1 in steps of 𝑚𝑐 do
11: #pragma oss task inout(𝐴̃ [𝑡𝑖𝑑%𝑛𝑐𝑝𝑢𝑠],𝐶 𝑗𝑐 [𝑖𝑐 ∗ 𝑟𝑠𝑐])
12: 𝐴𝑖𝑐 = 𝐴𝑝𝑐 + 𝑖𝑐 ∗ 𝑟𝑠𝑎
13: 𝐶𝑖𝑐 = 𝐶 𝑗𝑐 + 𝑖𝑐 ∗ 𝑟𝑠𝑐
14: 𝐴̃ [𝑡𝑖𝑑%𝑛𝑐𝑝𝑢𝑠] = 𝑝𝑎𝑐𝑘 (𝐴𝑖𝑐)
15: for 𝑗𝑟 = 0, ..., 𝑛𝑐 - 1 in steps of 𝑛𝑟 do
16: 𝐵 𝑗𝑟 = 𝐵̃ + 𝑗𝑟 ∗ 𝛿𝐵
17: 𝐶 𝑗𝑟 = 𝐶𝑖𝑐 + 𝑗𝑟 ∗ 𝑐𝑠𝑐 ∗ 𝑁𝑅

18: for 𝑖𝑟 = 0, ...,𝑚𝑐 - 1 in steps of 𝑚𝑟 do
19: 𝐴𝑖𝑟 = 𝐴̃ + 𝑖𝑟 ∗ 𝛿𝐴
20: 𝐶𝑖𝑟 = 𝐶 𝑗𝑟 + 𝑖𝑟 ∗ 𝑟𝑠𝑐 ∗𝑀𝑅

21: 𝐶 (𝑖𝑟 : 𝑖𝑟 +𝑚𝑟 − 1, 𝑗𝑟 : 𝑗𝑟 + 𝑛𝑟 − 1)+ = . . .

22: end for
23: end for
24: end for
25: end for
26: end for
27: #pragma oss taskwait
28: return𝐶𝑚𝑛

of parallelism could benefit from both strategies, but it is not trivial
to combine both while leaving performance unhindered. For this
purpose, OmpSs-2 offers the for clause, which represents a task
that internally leverages work-sharing techniques to exploit fine-
grained loop-based parallelism. These tasks are helpful in scenarios
where not enough parallelism per core is exposed. They can adapt
to system demands due to their ability to run in several threads
concurrently. This removes the need to choose between a large
number of fine-grained tasks – which may lead to runtime over-
head –, and a small number of coarse-grained tasks that are not
enough to exploit all available cores.

3 OPTIMIZED TASK-BASED GEMM
IMPLEMENTATION

In this section, we describe the proposed parallel task-based imple-
mentations of GEMM. As already mentioned, we have implemented
them into the BLIS Sandbox infrastructure, which allows the imple-
mentation of different parallel schemes while benefiting from its
existing build system. To ensure that the parallelization strategy is
the only difference among the fork-join and task-based versions,
our BLIS sandbox implementation considers a few rules. First, all
matrices are allocated in row-major order to better accommodate
data into the cache memory. Second, it applies the algorithms im-
plemented by BLIS to pack the panels of matrices 𝐴 and 𝐵 into
contiguous buffers. Finally, it uses the same optimized micro-kernel
as the fork-join implementation.

We start by describing an implementation of the GEMM routine
with the task-based model that uses common directives offered
by different programming interfaces. Next, we present the two
implementations that use advanced features from OmpSs-2. Finally,
we describe the heuristic to select the best parallelization strategy
and optimal parameters.

..

.
ÃTn

ÃT1

ic loop

mcmc

jr loop

ir loop

T0 T0

nr nr

mr mr

T1

Tn

T1

Tn

Packing

ÃT0

... ...

.. ...

kc

pc loop

kc

Packing

...

Figure 2: Illustration of Algorithm 2

3.1 Generic Task-based Implementation
This section describes a generic task-based implementation to par-
allelize an optimized sequential GEMM that can be implemented
with standard OpenMP task constructs. Given the discussion in
Section 2.2 – and as OpenMP does not provide the weak dependen-
cies feature – between the five loops around the micro-kernel, we
choose to parallelize the 𝑖𝑐 loop due to its available parallelism. Even
though we use OmpSs-2 directives to describe our implementations,
porting them to OpenMP is a straightforward task.

Algorithm 2 depicts the proposed implementation while Figure
2 illustrates the partitioning of the matrices. First, it obtains the
number of CPUs (𝑛𝑐𝑝𝑢𝑠) used by the application – settable by the
user, by default the number of cores available in the architecture.
When the application gets to the #pragma oss task directive (line
11), a new explicit task is generated from the associated structured
block. Each task will receive a different shared block of 𝐶 𝑗 , a panel
of 𝐴̃ based on its task id (𝑡𝑖𝑑%𝑛𝑐𝑝𝑢𝑠) and will share the same panel
𝐵̃. In total, for each 𝑝𝑐 loop iteration, 𝑚

𝑚𝑐
tasks will be created.

Two inout dependencies are defined on a per-task basis to en-
sure correctness in the algorithm. First,𝐶 𝑗𝑐 [𝑖𝑐 ∗ 𝑟𝑠𝑐] is protected so
that the positions of the 𝐶 𝑗𝑐 shared matrix are not being updated
by more than one task at a time. Second, we protect 𝐴̃[𝑡𝑖𝑑%𝑛𝑐𝑝𝑢𝑠]
to ensure that distinct tasks that are created at each 𝑝𝑐 iteration
will run one after another, sharing the same panel 𝐴̃. It is worth
mentioning that defining these inout dependencies avoids the need
to use a barrier after 𝑖𝑐 loop iteration. Given this, the panels of 𝐴̃
can be allocated only once at the beginning (line 2), so that the allo-
cations barely affect performance and avoid increasing the amount
of necessary memory. Finally, each created task will compute over
a different position of 𝐶𝑖𝑐 matrix in parallel, as illustrated in Figure
2. The oss taskwait waits until all previous tasks have completed
before returning the 𝐶𝑚𝑛 matrix (line 27).

Seamless Optimization of the GEMM Kernel for Task-based Programming Models

Algorithm 3 OmpSs-2 Taskloop Variant
1: get_parameters(𝑛𝑐𝑝𝑢𝑠 , 𝑜𝑠𝑠𝑛𝑐 , 𝑜𝑠𝑠𝑚𝑐 , 𝑜𝑠𝑠𝑏𝑠𝑥 , 𝑜𝑠𝑠𝑏𝑠𝑦)
2: panel_allocation(𝐴̃ [𝑛𝑐𝑝𝑢𝑠])
3: panel_allocation(𝐵̃ [𝑛

𝑜𝑠𝑠𝑛𝑐
])

4: #pragma oss taskloop grainsize(𝑜𝑠𝑠𝑏𝑠𝑥)
5: for 𝑗𝑐 = 0, ..., n - 1 in steps of 𝑜𝑠𝑠𝑛𝑐 do
6: 𝐵 𝑗𝑐 = 𝐵 + 𝑗𝑐 ∗ 𝑐𝑠𝑏
7: 𝐶 𝑗𝑐 = 𝐶 + 𝑗𝑐 ∗ 𝑐𝑠𝑐
8: for 𝑝𝑐 = 0, ..., k - 1 in steps of 𝑘𝑐 do
9: 𝐴𝑝𝑐 = 𝐴 + 𝑝𝑐 ∗ 𝑐𝑠𝑎
10: 𝐵𝑝𝑐 = 𝐵 𝑗𝑐 + 𝑝𝑐 ∗ 𝑟𝑠𝑏
11: 𝐵̃ [𝑡𝑖𝑑 𝑗𝑐] = 𝑝𝑎𝑐𝑘 (𝐵𝑝𝑐)
12: #pragma oss taskloop grainsize(𝑜𝑠𝑠𝑏𝑠𝑦) inout(𝐴̃ [𝑡𝑖𝑐%𝑛𝑐𝑝𝑢𝑠],𝐶 𝑗𝑐 [𝑖𝑐∗𝑟𝑠𝑐])
13: for 𝑖𝑐 = 0, ..., m - 1 in steps of 𝑜𝑠𝑠𝑚𝑐 do
14: 𝐴𝑖𝑐 = 𝐴𝑝𝑐 + 𝑖𝑐 ∗ 𝑟𝑠𝑎
15: 𝐶𝑖𝑐 = 𝐶 𝑗𝑐 + 𝑖𝑐 ∗ 𝑟𝑠𝑐
16: 𝐴̃ [𝑡𝑖𝑐%𝑛𝑐𝑝𝑢𝑠] = 𝑝𝑎𝑐𝑘 (𝐴𝑖𝑐)
17: for 𝑗𝑟 = 0, ..., 𝑛𝑐 - 1 in steps of 𝑛𝑟 do
18: 𝐵 𝑗𝑟 = 𝐵̃ + 𝑗𝑟 ∗ 𝛿𝐵
19: 𝐶 𝑗𝑟 = 𝐶𝑖𝑐 + 𝑗𝑟 ∗ 𝑐𝑠𝑐 ∗ 𝑁𝑅

20: for 𝑖𝑟 = 0, ...,𝑚𝑐 - 1 in steps of 𝑚𝑟 do
21: 𝐴𝑖𝑟 = 𝐴̃ + 𝑖𝑟 ∗ 𝛿𝐴
22: 𝐶𝑖𝑟 = 𝐶 𝑗𝑟 + 𝑖𝑟 ∗ 𝑟𝑠𝑐 ∗𝑀𝑅

23: 𝐶 (𝑖𝑟 : 𝑖𝑟 +𝑚𝑟 − 1, 𝑗𝑟 : 𝑗𝑟 + 𝑛𝑟 − 1)+ = . . .

24: end for
25: end for
26: end for
27: end for
28: end for
29: #pragma oss taskwait
30: return𝐶𝑚𝑛

3.2 OmpSs-2 Taskloop Variant
This strategy uses OmpSs-2 taskloop dependencies, as described in
Section 2.4, on the parallelization of the 𝑗𝑐 and 𝑖𝑐 loops, as those are
the loops with the highest parallelism available. We describe the
parallelization scheme in Algorithm 3 and illustrate the partitioning
of the matrices in Figure 3. The strategy considers as input four
parameters defined by an environment variable that is used to
distribute the workload among the created tasks: 𝑜𝑠𝑠𝑛𝑐 and 𝑜𝑠𝑠𝑏𝑠𝑥 ,
which respectively define the block size assigned to each task and
the number of iterations (granularity) that each task will receive
from the 𝑗𝑐 loop; and 𝑜𝑠𝑠𝑚𝑐 and 𝑜𝑠𝑠𝑏𝑠𝑦 , which define the same
parameters for the 𝑖𝑐 loop. If the user does not define these, default
values from BLIS are used instead, and 𝑜𝑠𝑠𝑏𝑠𝑥 and 𝑜𝑠𝑠𝑏𝑠𝑦 are set to
1. All these values are initialized in line 1 of the Algorithm 3.

When the #pragma oss taskloop directive around the 𝑗𝑐 loop
is reached (line 4), 𝑡𝑎𝑠𝑘𝑠 𝑗𝑐 tasks are created, defined by 𝑛

𝑜𝑠𝑠𝑏𝑠𝑥×𝑜𝑠𝑠𝑛𝑐 .
Each will be assigned to a different column panel of matrices𝐶 and
𝐵, sharing matrix 𝐴. Then, in the 𝑝𝑐 loop, each task will share the
same block of matrix 𝐴 of size 𝑘𝑐 and split the column panel of 𝐵 𝑗𝑐

in 𝑘𝑐 lines. Moreover, each task packs its column panel of 𝐵𝑝𝑐 into
the contiguous buffer 𝐵̃ [𝑡𝑖𝑑 𝑗𝑐], where 𝑡𝑖𝑑 𝑗𝑐 is the task id (from 0 to
𝑡𝑎𝑠𝑘𝑠 𝑗𝑐 − 1). Similarly to the design choice discussed in Section 3.1,
all buffers are allocated at the beginning of the execution (line 3).

When each parallel task reaches the #pragma oss taskloop
directive around the 𝑖𝑐 loop (line 12), it creates as many tasks as
represented by 𝑡𝑎𝑠𝑘𝑠𝑖𝑐 = 𝑚

𝑜𝑠𝑠𝑏𝑠𝑦×𝑜𝑠𝑠𝑚𝑐
. There will be a total of

𝑡𝑎𝑠𝑘𝑠 𝑗𝑐 × 𝑡𝑎𝑠𝑘𝑠𝑖𝑐 parallel tasks for each iteration of the 𝑝𝑐 loop.
Hence, to ensure the correct result of the GEMM routine, the al-
gorithm applies the same dependencies discussed in Section 3.1
w.r.t the panel 𝐴̃ and the positions of matrix 𝐶 𝑗𝑐 . Moreover, each

......

...

...

...

T1

ic loop

jc loop

ossnc

...

ossbsx

T0 T1 Tn ...

ossbsx

T0 T1 Tn

Cmn

Amk

Bkn

pc loop

kc

kc

ossnc

Packing

ÃT
nÃ

...

...
ossbsy

ossmc Ta0

Ta1

Tam

...

Ta0

Ta1

Tam

ossmc

ossbsy

Figure 3: Illustration of Algorithm 3

task will compute over a block𝐶𝑖𝑐 of size 𝑜𝑠𝑠𝑏𝑠𝑦 ×𝑜𝑠𝑠𝑛𝑐 ,𝐴𝑖𝑐 of size
𝑜𝑠𝑠𝑏𝑠𝑦 ×𝑘𝑐 , and share 𝐵̃ of size 𝑘𝑐 ×𝑜𝑠𝑠𝑛𝑐 among all tasks created by
its parent task. All tasks compute the loops indexed by 𝑗𝑟 and 𝑖𝑟 and
the micro-kernel in parallel from this moment on. Finally, the oss
taskwait directive ensures that all tasks finish the computation
before returning matrix 𝐶𝑚𝑛 (line 29).

3.3 OmpSs-2 Task For Variant
The second optimized strategy implemented with OmpSs-2 applies
the task for feature (discussed in Section 2.4). As this strategy
shares the same structure as the previous one, based on Algorithm 3,
the only difference is the addition of the following directive in line
12: task for chunksize(𝑜𝑠𝑠𝑏𝑠𝑦). Taskfors are work-sharing tasks
that behave similarly to regular tasks. A single thread executes a
regular task; nonetheless, a taskfor can be executed concurrently
by several threads. Its synchronization is handled through data
dependencies, without the need for explicit barriers. Its iteration
space is partitioned into chunks, the size of which is defined by
users via directive chunksize(size). However, the difference is
that creating these chunks does not imply an overhead such as the
one associated with tasks, as it does not need an extra allocation
or specific management. Threads obtain the boundaries and data
environment to work with it. In summary, taskfors can be run
concurrently by multiple threads without paying an extra overhead
for their management.

3.4 ASOC: Automatic Selection of Optimal
Configurations

Finding an optimized configuration (implementation and parame-
ters) that delivers the best outcome in performance would require a
huge design space exploration. In this section – and with the previ-
ously used terminology for parameters and variables in Algorithm
3 – we give an in-depth description of how ASOC obtains these
ideal configurations. To highlight the importance of the chosen
configuration, we have evaluated the performance and energy con-
sumption obtained when using different configurations for each
implementation (oss taskloop and oss task for): 𝑜𝑠𝑠𝑏𝑠𝑥 , 𝑜𝑠𝑠𝑏𝑠𝑦 ,

Lorenzon et al.

0

5

10

15

20

25

0 100 200 300 400 500 600

E
n

er
g

y
 (

J
o

u
le

s)

GFLOPS/Sec

Better

B
etter

(16,1,72,4)

(16,1,72,2)

0

500

1000

1500

2000

2500

0 100 200 300 400 500 600 700

GFLOPS/Sec

OSS-Taskloop

OSS-Taskfor

Better

B
etter

(16,1,72,4)

(16,1,72,2)

a) 4000 x 4000 x 240 b) 3000 x 3000 x 1024

Figure 4: Performance and Energy results when different
parameters and parallelization schemes are considered for
two different input sets (𝑚×𝑛×𝑘) on the Intel 44-core system

𝑜𝑠𝑠𝑛𝑐 – where 𝑛 is divided by 1, 2, 4, 8, 16, 32, and 64 – and 𝑜𝑠𝑠𝑚𝑐

– from 18 to 72 in steps of 6, as it must be a number divisible by 6
due to the micro-kernel organization. In total, 3,430 configurations
have been evaluated for each input set.

In Figure 4 we showcase the results of two different input sets
on the Intel 44-core system (described in Section 4). Blue squares
represent executions with different parameters of the taskloop vari-
ation, while the orange triangles represent the taskfor version. As
observed, the outcomes in performance (x-axis) and energy con-
sumption (y-axis) are strongly affected by the chosen configuration.
On top of that, there is not a unique configuration that delivers
the best result for different inputs. For instance, the configuration
which yields the lowest energy consumption and the highest per-
formance for an input such as 4000 × 4000 × 240 is 12% worse in
performance for an input such as 3000 × 3000 × 1024.

As observed, finding adequate task granularities becomes a criti-
cal objective to yield competitive performance. To automatically
and transparently select the ideal implementation (oss taskloop
or oss task for) and their respective parameters (𝑜𝑠𝑠𝑚𝑐 , 𝑜𝑠𝑠𝑛𝑐 ,
𝑜𝑠𝑠𝑏𝑠𝑥 , and 𝑜𝑠𝑠𝑏𝑠𝑦), we integrated a heuristic within our BLIS sand-
box. At runtime, and without the need for a previous training phase,
ASOC finds an optimized set of parameters for an application by
considering the dimensions of input matrices (𝑚, 𝑛, and 𝑘) and
features of the target architecture, such as the number of cores and
memory hierarchy.

To define the parameters through the experiments performed in
the design space exploration, we take the following design choices
into account: (i) To overcome the overhead of managing and dis-
tributing the workload among the tasks, the minimum number of
iterations assigned to each created task in the 𝑗𝑐 loop is 64. If 𝑛
is smaller than this number, the fifth loop is not parallelized; (ii)
Creating more than 𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑟𝑒𝑠

4 tasks in the 𝑗𝑐 loop will increase
the total amount of tasks created in the 𝑖𝑐 loop, diminishing the
workload size assigned to each task and increasing the overhead to
manage tasks; (iii) Setting the granularity of loop 𝑗𝑐 to 1 (𝑜𝑠𝑠𝑏𝑠𝑥 = 1)
can deliver better results, as it is associated to the number of tasks
that will be created in loop 𝑖𝑐 ; (iv) When defining the 𝑜𝑠𝑠𝑚𝑐 pa-
rameter for the 𝑖𝑐 loop, the𝑚 dimension plays an important role.
Thus, when𝑚 is smaller than 512, it is better to set 𝑜𝑠𝑠𝑚𝑐 = 𝑚𝑐

2 .
Otherwise, it is better to keep the value defined by BLIS, as it is
based on the structure of the optimized micro-kernel.

Algorithm 4 Automatic Selection of Optimal Configurations
1: 𝑜𝑠𝑠𝑛𝑐 ← 𝑛𝑐 ⊲ block size assigned to each task in the 𝑗𝑐 loop
2: 𝑜𝑠𝑠𝑚𝑐 ←𝑚𝑐 ⊲ block size assigned to each task in the 𝑖𝑐 loop
3: 𝑜𝑠𝑠𝑏𝑠𝑥 ← 1 ⊲ granularity of each task in the 𝑗𝑐 loop
4: 𝑜𝑠𝑠𝑏𝑠𝑦 ← 1 ⊲ granularity of each task in the 𝑖𝑐 loop
5:
6: 𝑚 ≥ 512 ? 𝑜𝑠𝑠𝑚𝑐 =𝑚𝑐 : 𝑜𝑠𝑠𝑚𝑐 =

𝑚𝑐
2 ⊲ defining 𝑜𝑠𝑠𝑚𝑐

7:
8: for 𝑖 = 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑟𝑒𝑠/4, ...1 in steps of −1 do ⊲ defining 𝑜𝑠𝑠𝑛𝑐
9: 𝑡𝑒𝑚𝑝 = 𝑛/𝑖
10: 𝜏 = 𝑠𝑖𝑧𝑒 (𝐶𝑜𝑠𝑠𝑚𝑐 ,𝑡𝑒𝑚𝑝 +𝐴𝑜𝑠𝑠𝑚𝑐 ,𝑘𝑐 + 𝐵𝑘𝑐,𝑡𝑒𝑚𝑝)
11: if 𝜏 fits in 𝐿3𝑐𝑎𝑐ℎ𝑒 then
12: 𝑜𝑠𝑠𝑛𝑐 = 𝑡𝑒𝑚𝑝

13: 𝑡𝑎𝑠𝑘𝑠 𝑗𝑐 = 𝑛/𝑜𝑠𝑠𝑛𝑐
14: end if
15: end for
16:
17: 𝛽 =𝑚/(𝑜𝑠𝑠𝑚𝑐 × 𝑜𝑠𝑠𝑏𝑠𝑦) ⊲ calculating total number of tasks
18: if𝑚𝑜𝑑 (𝑚, 𝛽) > 0 then 𝛽 = 𝛽 + 1
19: end if
20: 𝑜𝑠𝑠𝑡𝑎𝑠𝑘𝑠 = 𝛽 ∗ 𝑡𝑎𝑠𝑘𝑠 𝑗𝑐 ⊲ total number of tasks
21: 𝑜𝑠𝑠𝑡𝑎𝑠𝑘𝑠′ =𝑚𝑜𝑑 (𝑜𝑠𝑠𝑡𝑎𝑠𝑘𝑠 , 𝑜𝑠𝑠𝑛𝑐)
22:
23: for Ω = 1, ...,𝑚/(𝑜𝑠𝑠𝑚𝑐 × Ω) in steps of 1 do ⊲ refining 𝑜𝑠𝑠𝑏𝑠𝑦
24: 𝑡 =𝑚/(𝑜𝑠𝑠𝑚𝑐 × Ω)
25: 𝑚𝑜𝑑 (𝑚, 𝑡) == 0 ? 𝛽 = 𝑡 : 𝛽 = 𝑡 + 1
26: 𝜙 =𝑚𝑜𝑑 (𝛽 × 𝑡𝑎𝑠𝑘𝑠 𝑗𝑐 , 𝑜𝑠𝑠𝑡𝑎𝑠𝑘𝑠)
27: if 𝜙 > 𝑜𝑠𝑠𝑡𝑎𝑠𝑘𝑠/2 then
28: 𝜙 = 𝑜𝑠𝑠𝑡𝑎𝑠𝑘𝑠 − 𝜙
29: end if
30: if 𝜙 ≤ 𝑜𝑠𝑠𝑡𝑎𝑠𝑘𝑠′ then
31: 𝑜𝑠𝑠𝑡𝑎𝑠𝑘𝑠 = 𝛽 × 𝑡𝑎𝑠𝑘𝑠 𝑗𝑐 ⊲ total number of tasks
32: 𝑜𝑠𝑠𝑡𝑎𝑠𝑘𝑠′ = 𝜙

33: 𝑜𝑠𝑠𝑏𝑠𝑦 = Ω ⊲ new value for 𝑜𝑠𝑠𝑏𝑠𝑦
34: end if
35: end for

The procedure is described in Algorithm 4. It starts assigning
default values to parameters based on the BLIS implementation
(lines 1-4). Afterwards, the first parameter to be defined is 𝑜𝑠𝑠𝑚𝑐

following the design choice (iv) discussed above. It is the first to be
defined because it is used to get the size of panels for matrices 𝐴
and 𝐶 when calculating the 𝑜𝑠𝑠𝑛𝑐 value. Secondly, 𝑜𝑠𝑠𝑛𝑐 is defined
(lines 8-15), playing an essential role in the distribution of elements
from𝐶 and 𝐵 to the tasks. The higher this value, the fewer tasks are
created and the greater the workload assigned to each task becomes.
Hence, it aims to create tasks so that each task’s memory (𝜏) for the
elements of matrices used within the 𝑝𝑐 loop fits in the L3 cache.
We consider this loop to ensure that tasks created in the 𝑖𝑐 loop
compute over data already loaded into shared cache levels. In the
end, the number of tasks that will be created (𝑡𝑎𝑠𝑘𝑠 𝑗𝑐) is defined by
dividing the 𝑛 dimension by the value of 𝑜𝑠𝑠𝑛𝑐 .

Next, we compute the number of tasks created in the 𝑖𝑐 loop,
represented by 𝛽 . It is worth mentioning that 𝑜𝑠𝑠𝑡𝑎𝑠𝑘𝑠 means the
total number of tasks that will be created. 𝛽 is initially defined
w.r.t the standard value of 𝑜𝑠𝑠𝑏𝑠𝑦 (lines 17-21). Then, the operations
performed between lines 23 and 35 refine 𝑜𝑠𝑠𝑏𝑠𝑦 , using Ω as its
temporary value. Our heuristic aims at finding a value for 𝑜𝑠𝑠𝑏𝑠𝑦
in which the number of created tasks is a multiple of the available
number of cores, or at least a close number to that, to ensure optimal
workload balancing. Finally, according to the number of times the
loop 𝑖𝑐 will be executed, we define if the strategy to be used is
either task loop or task for. If data is to be re-used, task for
is selected due to its data re-using features (as discussed in Section
2.4). Otherwise, task loop is selected.

Seamless Optimization of the GEMM Kernel for Task-based Programming Models

Table 1: Configurations of Input Matrices

Input Size
m and n k

Case I 2000, 3000, ..., 14400 240
Case II 14400 200, 300, ..., 1000
Case III 2000, 3000, ..., 10000 2048
Case IV 10240 1000, 1200, ..., 4000

Table 2: Main characteristics of each multicore architecture

Intel Xeon
E5-2699 v4

AMD EPYC
7742

Microarchitecture Broadwell Zen2
#Physical Cores 44(22+22) 64
Base Oper. Freq. 2.2GHz 2.25GHz
L1 Data Cache 32KB 32KB
L2 Cache 256KB 512KB
L3 Cache (total) 110MB 256MB
Main memory 256GB 1024GB
Node name Intel-Xeon AMD-EPYC

Table 3: Evaluated Configurations

Config. Description

BLIS omp-fj

GEMM with the highly optimized OpenMP fork-join model
implemented by BLIS, where the number of threads

matches the number of physical cores, thread affinity
set to close, and thread placement to cores

BLIS pt-fj Optimized BLIS implementation of GEMM with PThreads

omp-tasks
Generic task-based implementation of GEMM with

OpenMP (as described in Section 3.1)

oss
Generic task-based implementation of GEMM with

OmpSs-2 (as described in Section 3.1)

oss-loop
OmpSs-2 Task Loop implementation with

parameters found by the design space exploration

oss-for
OmpSs-2 Task For implementation, with the best parameters

found by the design space exploration

oss-asoc
Results achieved when the automatic selection of optimal

configurations proposed in Section 3.4 is applied
AMD Aocl Vendor AMD Optimizing CPU Library
Intel MKL Vendor Intel Math Kernel Library

4 EVALUATION
4.1 Methodology
Input Matrices. Following the methodology used to validate the
standard OpenMP fork-join parallel implementation of BLIS [29],
we consider different test cases, as depicted in Table 1. Furthermore,
to keep the compatibility of data among executions, the matrices
are generated by BLIS routines.

Execution environment.We evaluate the configurations de-
scribed in Table 3. We performed the experiments on two modern
HPC systems, as depicted in Table 2.We used Ubuntu (Kernel v. 5.11)
on all the machines. The following methodology was employed to
reduce noise in executions: (i) CPU frequencies were set to their
base operating value, (ii) the executions consider a warm-up step
(a single execution of the GEMM routine) to avoid any cache and
memory influence on the measured performance, and (iii) we con-
sider the average of 50 executions for each configuration (input
set, implementation, and target machine) with a standard deviation
lower than 0.5%. The applications were compiled with the LLVM
compiler infrastructure (v. 12.0, using the -O3 flag). To measure the

Figure 5: Performance results for all configurations and input
cases: (a) and (b) show the GFLOP/s raw numbers while (c)
and (d) present the performance normalized to the best result
for each test case (↑ values = ↑ performance).

performance of only the GEMM kernel, without the initialization
and termination time of the matrices and warm-up, we used the
omp_get_wtime() function. As for the energy consumption, we used
the Running Average Power Limit library, which obtains the energy
of entire CPU packages and DRAM modules [12].

4.2 Performance Evaluation
In this section, we compare the performance results of each par-
allelization scheme running with the input cases on the target
processors, as described in Section 4.1. For that, they are organized
as follows: Figures 5 (a) and (b) depict the distribution of raw per-
formance numbers (GFLOPS/Sec) for all input cases for Intel and
AMD systems respectively. These figures highlight each version’s
average, maximum, minimum, and median values (represented by
each box), so the higher the values, the better. Both plots also show
the theoretical peak performance for each architecture. Similarly,
Figures 5 (c) and (d) show the distribution of the results normalized
to the best performance achieved on each test case – the closer the
value to 1.0, the better the performance2.

We start by highlighting that generic task-based implementa-
tions (omp-tasks and oss) cannot deliver competitive performance
when compared to omp-fj. The main reason for this behavior is the
lack of parallelism exploitation, as only one loop is parallelized due
to the model’s limitation that does not offer advanced dependency
managing features (as described in Section 3.1). On the other hand,
the task-based implementations that apply advanced dependency
features (oss-loop and oss-for) can outperform the optimized
OpenMP fork-join implementation. On top of that, it is worth not-
ing that for some test cases, oss-loop achieves better results than
oss-for (e.g., on AMD Epyc), while for other cases, oss-for is better
(e.g., on the Intel Xeon). This scenario highlights the need for an

2It is worth mentioning that for the fork-join versions, we only show the results of
omp-fj, as it delivered better performance than pt-fj since BLIS does not implement
any thread affinity for the pt-fj version. In this scenario, the number of context switches
and data movements – as threads are not pinned to a given core during the entire
execution – played an essential role in the performance of pt-fj.

Lorenzon et al.

0%

2%

4%

6%

8%

200 400 600 800 1000

C
a

c
h

e
 M

is
s
e
s

Case 2: k, m = n = 14400

omp-fj oss-asoc
Better

(a) Cache Misses

75%

80%

85%

90%

95%

100%

200 400 600 800 1000

C
P

U
 C

y
cl

es
 A

ct
iv

e

Case 2: k, m = n = 14400

omp-fj oss-asoc Better

(b) CPU Cycles Active

Figure 6: CPU/Memory usage of omp-fj and oss-asoc

automatic selection of optimized configurations. Hence, as oss-
asoc automatically defines an optimized parallelization scheme
and parameters to run the GEMM routine, in general, it can deliver
better performance than the omp-fj and all the other task-based
versions. When considering the average of all experiments, the
oss-asoc configuration achieved 11% and 4% better performance
than omp-fj on Intel Xeon and AMD Epyc, respectively.

Let us now compare the results achieved by the vendor opti-
mized implementations of GEMM (aocl and mkl). For the AMD
Epyc processor, oss-asoc can deliver better performance than the
aocl version as aocl is based on the omp-fj implementation and
therefore suffers from the very same drawbacks of fork-join models.
Even though it implements dynamic concurrency throttling to opti-
mize the number of running threads, the lack of malleability of the
runtime system limits the performance improvements. Furthermore,
themkl version presented the worst results as it is not optimized
for AMD processors. On average of all test cases, oss-asoc was 3%
and 20% better than the aocl and mkl versions, respectively. As
for the Intel Xeon processor, the oss-asoc implementation reached
competitive levels of performance when compared to the highly op-
timizedmkl version. On average of all test cases, oss-asoc achieved
only 1.5% less performance than mkl and 10.5% more performance
than the aocl version.

While oss-asoc achieves overall performance levels closer to
the theoretical peak, it also presents the lowest variability on nor-
malized performance, as observed in Figures 5 (c) and (d). In other
words, the oss-asoc implementation can reach the best perfor-
mance, or at least get close to it, regardless of the test case. This
behavior highlights the ability of our optimized GEMM task-based
version to adapt itself according to the input set and microarchitec-
ture at hand. As a result of this malleability provided by running an
optimized task-based configuration (oss-asoc), hardware resources
such as cache memories and processing units are better utilized.
Figure 6 illustrates this by considering the behavior of both omp-fj
and oss-asocwhen running with Case 2 input set on the Intel Xeon
processor. It shows the cache miss ratio and the percentage of CPU
cycles active during execution (the number of cycles where the
CPU is doing useful computation). As observed, oss-asoc signifi-
cantly decreases the number of cache misses due to the immediate
successor scheduling policy. As soon as a CPU finishes executing
a task, if a successor task can be executed, it is done immediately
to benefit from data re-use in the cache memories. Similarly, since
the optimized task-based version does not use barriers, there is no
implicit overhead due to synchronization. Thus, the outcome is a
higher number of active CPU cycles.

Figure 7: (a) Distribution of energy normalized to the best
result of each input case for all test cases on the Intel Xeon
processor (↓ values = ↑ energy efficiency). (b) Zoomed-in view
of Fig. 7a.

Even though the oss-asoc execution can deliver better perfor-
mance than the omp-fj, mkl, and aocl versions in most cases,
there are specific scenarios where the optimized fork-join versions
were better due to the overhead of the OmpSs-2 runtime system in
managing the tasks and workload distribution. In such scenarios
(e.g., Case 1, m=n=2000 on Intel Xeon and Case IV, k=3000 on AMD
Epyc), the oss-asoc configuration was unable to deliver competitive
performance results. To demonstrate this scenario, we illustrate in
Figure 8 execution timeline traces for three different configurations:
(i) the most common across all configurations, a balanced work-
load (top) with a zoomed-in view showcasing the lack of gaps –
thus the high parallelism available –, (ii) the previously mentioned
under-performing scenario (Case IV, k=3000 on AMD Epyc), where
there is a lack of parallelism (bottom left), and (iii) the execution of
multiple kernels of the previous under-performing scenario at the
same time. It is important to note that these three traces highlight
different executions, as the lack of parallelism in (b) is shadowed
by the execution of multiple chained GEMM kernels. Thus, the
timelines of all these traces are completely different.

As shown, for most configurations, the trace presents no gaps,
which coupledwith the previous CPU utilization plots demonstrates
the benefits from our implementations which combine both tasks
and work-sharing. Nevertheless, there are scenarios (bottom left
trace) in which a lack of parallelism causes the execution trace to be
unbalanced. Furthermore, the evident lack of workload also causes
the time tomanage the tasks to be greater than their execution. Both
these drawbacks lead to an undesired reduction in performance.
However, this is an unlikely scenario in task-based applications, as
other tasks could fill the gaps on the GEMM kernel. To illustrate
this behavior, we simultaneously executed fifteen micro-kernels
with the same configuration (bottom right) to exemplify a more
realistic scenario. As shown at the beginning, the runtime exposes
a high amount of parallelism, and the time to manage tasks be-
comes minimal in comparison. Due to this, the execution remains
as balanced as our previous experiment (top).

4.3 Energy Consumption Evaluation
In this section, we compare the energy consumption of the im-
plementations and scenarios discussed in Section 4.1 on the Intel

Seamless Optimization of the GEMM Kernel for Task-based Programming Models

(a) Balanced execution of GEMM

(b) Lack of parallelism and unbalanced execution of GEMM (left) and Simultaneous execution of multiple GEMM (right)

Figure 8: Execution traces exemplifying a balanced and an unbalanced workload

Xeon processor3. We illustrate in Figure 7 the distribution of energy
results for each configuration, normalized to the best result on each
test case – the closer the values are to 1.0, the lower the energy
consumption. The outcome of offering malleability to the GEMM
routine so it can adapt to the execution environment at hand and
make better use of the hardware resource (as discussed in Section
4.2) is a significant reduction in energy consumption. When con-
sidering the task-based versions with advanced features (oss-loop
and oss-for), the energy reductions vary according to the input set
due to the intrinsic characteristics of each feature (as discussed in
Section 3). Therefore, there are cases where the oss-loop execution
delivers better results (e.g., Case II, k=200) and others where the
oss-for is better (e.g., Case II, k=1000), reinforcing the need of the
oss-asoc configuration. Therefore, as the oss-asoc configuration
can cover a wider range of possibilities (parameters and implemen-
tation) than the oss-loop and oss-for simultaneously, it can deliver
better energy consumption.

3As for the AMD Epyc system, we were unable to obtain such readings, as user
permissions in this machine disabled some hardware counter readings.

4.4 Cholesky Decomposition Use-case
In this Section, we use the Cholesky decomposition algorithm to
illustrate the benefits of our optimized task-based GEMM kernel.
To that end, we have implemented several versions of this algo-
rithm using OpenMP (omp) and OmpSs-2 (oss) tasks. The first
two versions (omp+blis-seq and oss+blis-seq) use the traditional
task-based parallelization strategy [10] where each task executes a
sequential BLAS kernel. A well-known problem of this approach
is that few tasks are available at the end of the execution. Thus,
not all available cores are exploited on large multi-core systems.
We have implemented three additional versions that rely on the
previous task-based parallelization strategy to address this issue,
which use parallel BLAS kernels instead. On the omp+blis-omp-fj
version the BLAS kernels are parallelized using the OpenMP fork-
join model, while the (omp+blis-omp-tasks), oss+blis-oss-asoc,
and oss+blis-oss-dse versions use OpenMP tasks and OmpSs-2
tasks with the ASOC heuristic, respectively. We have executed each
version with seventeen distinct input sets ranging from𝑚 = 𝑛 =

𝑘 = 2048 to 𝑚 = 𝑛 = 𝑘 = 65536 on the AMD Epyc multicore
architecture. Moreover, for each input set, we evaluated different

Lorenzon et al.

Figure 9: Results for the Cholesky evaluation: (a) average for
all input sets; (b) distribution of the perf. normalized to the
best result for all inputs; (↑ values = ↑ performance).

blocksizes from 64 to 𝑛
2 and discuss next the best performance found

by each configuration on each input set.
Figure 9 depicts the (a) average performance of each version

represented by the Cholesky + BLIS GEMM implementation w.r.t.
all input sets and (b) the distribution of the results normalized to
the best performance achieved on each input set. We also depicted
in the same Figure the best results found by an exhaustive search
that tries all possible combinations of blocksize, parameters to the
GEMM routines, and the number of task granularity (oss+blis-oss-
dse). As observed, when Cholesky uses the oss-asoc version, it can
deliver better overall performance than the OpenMP fork-join and
task-based versions. On top of that, it reaches performance levels
close to the ones achieved by the oss+blis-oss-dse configuration.
Although it shows that there is still room for enhancements on the
proposed heuristic, it is essential to highlight that (oss+blis-oss-
asoc) works at runtime and with no previous training phase nor
information from the software developer.

In Figure 10 we show the execution trace of the oss+blis-seq
(top) and the oss+blis-oss-asoc (bottom) versions with a 𝑚 =

𝑛 = 𝑘 = 8192 problem size. The goal of this figure is to show
when an application can take advantage of our GEMM task-based
implementation. For that, we have chosen a configuration from
the samples averaged in Figure 9 that does not exploit the GEMM
kernel’s task-level parallelism. These traces, which are on the same
time scale, clearly illustrate the benefits of our optimized task-based
GEMM kernel. The oss-asoc heuristic can find good configurations
for the GEMM kernels and the runtime system can leverage the
additional sub-tasks created by different BLIS kernels (e.g., syrk,
trsm, and GEMM) to exploit all cores during the whole execution,
which significantly reduces the execution time.

5 RELATEDWORK
Many works have previously proposed optimizations of GEMM
operations. For instance, Tan et al. [30] propose a performance
model to optimize the performance of the GEMM operation in a
Fermi GPU architecture. Similarly, Heinecke et al. [13] optimize
GEMM routines for native and hybrid execution in the Intel Xeon
Phi. Kurzak et al. [18] provide implementations of the QR, LU,
and Cholesky algorithms but do not propose optimizations for the
GEMM. The works of Agullo et al. [5, 6] focus on implementing
the Cholesky algorithm on heterogeneous and distributed systems,
which deviates from our approach. Benson and Ballard [8] propose

Figure 10: Execution traces demonstrating a better use of the
HW resources by (b) oss+blis-oss-asoc compared to the (a)
oss+blis-seq

a code generation tool to automatically implement versions of ma-
trix multiplication algorithms with the OpenMP fork-join model.
CompDGEMM [15] is an optimized OpenBLAS DGEMM routine for
64-bit ARMv8 architectures. Jiang et al. [16] propose a three-level
blocking DGEMM algorithm to improve data-locality in the Sun-
way TaihuLight supercomputer. Lim et al. [19] optimize a DGEMM
OpenMP fork-join version by choosing the proper block size and
thread affinity to the Intel Xeon Phi. Abdelfattah et al. [4] propose
HGEMM to improve the performance in GPU Tensor Cores. SLATE
[11] is a PBLAS implementation to improve the performance in
accelerators and distributed systems. BiQGEMM [14] is a GEMM
routine for quantized neural networks that optimize the perfor-
mance through removing computation redundancy. FLASH [23] is
a framework that applies an analytical model to optimize the tile
size and data movement of the GEMM kernel in accelerators. Park
et al. [26] present a study of optimizations for the PDGEMM routine,
by applying thread affinity/placement, parallelization scheme, and
data blocking using AVX-512 instructions on Intel-based distributed
systems.

Our Contributions. Compared to the works that propose dif-
ferent strategies for optimizing the GEMM operation [4, 8, 11, 13–
17, 19, 23, 26, 30], our work is the first to present highly optimized
task-based implementations of the GEMM routine. On top of that,
although distinct works have evaluated the execution of task-based
versions of the GEMM routine [22, 24, 28, 31, 32], none of them (i)
implement a highly optimized task-based version; and (ii) propose
a heuristic to select the best parallelization scheme and parameters;
as we do in this work.

6 CONCLUSIONS AND FUTUREWORK
We have presented a task-based implementation of the GEMM
kernel that task-based applications can seamlessly leverage. We
exploited several advanced OmpSs-2 features to minimize runtime

Seamless Optimization of the GEMM Kernel for Task-based Programming Models

overhead and improve load-balancing and data locality. As the pa-
rameters and implementation that deliver the best performance
change according to the input size of the matrices, we also proposed
a heuristic to select the best parallelization scheme and parameters
at runtime automatically. Through an extensive set of experiments,
we have shown that our optimized task-based implementation deliv-
ers better performance and reduces energy consumption compared
to the optimized BLIS OpenMP fork-join GEMM implementation.
Furthermore, our implementation can deliver better performance
than the optimized vendor implementations of GEMM (e.g., Intel
MKL and AMDAOCL). Lastly, we have demonstrated that real appli-
cations can enhance their performance by leveraging our optimized
task-based implementation. We intend to implement optimized
task-based versions of other linear algebra routines as future work.

REFERENCES
[1] 2009. Intel Math Kernel Library. Reference Manual. Intel Corporation, Santa Clara,

USA. ISBN 630813-054US.
[2] 2012. AMD Core Math Library (ACML) User Guide. Advanced Micro Systems

(AMD), Santa Ana, USA. https://developer.amd.com/wordpress/media/2012/10/
acml_userguide.pdf\.pdf

[3] 2021. AMD Optimizing CPU Libraries User Guide. Advanced Micro Systems
(AMD), Santa Ana, USA. https://developer.amd.com/wp-content/resources/
AOCL_User%20Guide_3.0.pdf/

[4] Ahmad Abdelfattah, Stanimire Tomov, and Jack Dongarra. 2019. Fast batched
matrix multiplication for small sizes using half-precision arithmetic on gpus. In
IEEE IPDPS. IEEE, 111–122.

[5] Emmanuel Agullo, Cédric Augonnet, Jack Dongarra, Hatem Ltaief, Raymond
Namyst, Samuel Thibault, and Stanimire Tomov. 2010. Faster, Cheaper, Better –
a Hybridization Methodology to Develop Linear Algebra Software for GPUs.

[6] Emmanuel Agullo, Olivier Aumage, Mathieu Faverge, Nathalie Furmento, Flo-
rent Pruvost, Marc Sergent, and Samuel Paul Thibault. 2017. Achieving High
Performance on Supercomputers with a Sequential Task-based Programming
Model. IEEE Transactions on Parallel and Distributed Systems (2017), 1–1.
https://doi.org/10.1109/TPDS.2017.2766064

[7] David Álvarez, Kevin Sala, Marcos Maroñas, Aleix Roca, and Vincenç Beltran.
2021. Advanced Synchronization Techniques for Task-Based Runtime Systems.
In ACM SIGPLAN (Virtual Event, Republic of Korea) (PPoPP ’21). ACM, New
York, NY, USA, 334–347. https://doi.org/10.1145/3437801.3441601

[8] Austin R Benson and Grey Ballard. 2015. A framework for practical parallel fast
matrix multiplication. ACM SIGPLAN Notices 50, 8 (2015), 42–53.

[9] J. J. Dongarra, Jeremy Du Croz, Sven Hammarling, and I. S. Duff. 1990. A Set
of Level 3 Basic Linear Algebra Subprograms. ACM Trans. Math. Softw. 16, 1
(March 1990), 1–17. https://doi.org/10.1145/77626.79170

[10] Joseph Dorris, Jakub Kurzak, Piotr Luszczek, Asim YarKhan, and Jack Dongarra.
2016. Task-Based Cholesky Decomposition on Knights Corner Using OpenMP. In
High Performance Computing, Michela Taufer, Bernd Mohr, and Julian M. Kunkel
(Eds.). Springer International Publishing, Cham, 544–562.

[11] Mark Gates, Jakub Kurzak, Ali Charara, Asim YarKhan, and Jack Dongarra. 2019.
Slate: Design of a modern distributed and accelerated linear algebra library. In
Int. Conf. for High Performance Computing, Networking, Storage and Analysis.
1–18.

[12] Marcus Hähnel, Björn Döbel, Marcus Völp, and Hermann Härtig. 2012. Mea-
suring Energy Consumption for Short Code Paths Using RAPL. SIGMETRICS
Performance Evaluation Rev. 40, 3 (2012), 13–17.

[13] Alexander Heinecke, Karthikeyan Vaidyanathan, Mikhail Smelyanskiy, Alexan-
der Kobotov, Roman Dubtsov, Greg Henry, Aniruddha G Shet, George Chrysos,
and Pradeep Dubey. 2013. Design and implementation of the linpack benchmark
for single and multi-node systems based on intel® xeon phi coprocessor. In IEEE
IPDPS. IEEE, 126–137.

[14] Yongkweon Jeon, Baeseong Park, Se Jung Kwon, Byeongwook Kim, Jeongin Yun,
and Dongsoo Lee. 2020. BiQGEMM: matrix multiplication with lookup table for
binary-coding-based quantized DNNs. In SC20: Int. Conf. for High Performance

Computing, Networking, Storage and Analysis. IEEE, 1–14.
[15] Hao Jiang, Feng Wang, Kuan Li, Canqun Yang, Kejia Zhao, and Chun Huang.

2015. Implementation of an accurate and efficient compensated dgemm for
64-bit armv8 multi-core processors. In IEEE Int. Conf. on Parallel and Distributed
Systems (ICPADS). IEEE, 491–498.

[16] Lijuan Jiang, Chao Yang, Yulong Ao, Wanwang Yin, Wenjing Ma, Qiao Sun,
Fangfang Liu, Rongfen Lin, and Peng Zhang. 2017. Towards highly efficient
DGEMM on the emerging SW26010 many-core processor. In Int. Conf. on Parallel
Processing (ICPP). IEEE, 422–431.

[17] Raehyun Kim, Jaeyoung Choi, and Myungho Lee. 2019. Optimizing parallel
GEMM routines using auto-tuning with Intel AVX-512. In Int. Conf. on High
Performance Computing in Asia-Pacific Region. 101–110.

[18] Jakub Kurzak, Hatem Ltaief, Jack Dongarra, and Rosa M. Badia. 2010. Scheduling
Dense Linear Algebra Operations on Multicore Processors. Concurr. Comput.:
Pract. Exper. 22, 1 (jan 2010), 15–44.

[19] Roktaek Lim, Yeongha Lee, Raehyun Kim, and Jaeyoung Choi. 2018. OpenMP-
based parallel implementation of matrix-matrix multiplication on the intel
knights landing. InWorkshops of HPC Asia. 63–66.

[20] Marcos Maronas, Kevin Sala, Sergi Mateo, Eduard Ayguadé, and Vicenç Beltran.
2019. Worksharing Tasks: An Efficient Way to Exploit Irregular and Fine-Grained
Loop Parallelism. In IEEE Int. Conf. on High Performance Computing, Data, and
Analytics. IEEE, 383–394. https://doi.org/10.1109/HiPC.2019.00053

[21] Marcos Maroñas, Xavier Teruel, and Vicenç Beltran. 2021. OpenMP Taskloop De-
pendences. InOpenMP: EnablingMassive Node-Level Parallelism, SimonMcIntosh-
Smith, Bronis R. de Supinski, and Jannis Klinkenberg (Eds.). Springer Int. Pub-
lishing, Cham, 50–64.

[22] Panagiotis D Michailidis and Konstantinos G Margaritis. 2012. Computational
comparison of somemulti-core programming tools for basic matrix computations.
In IEEE Int. Conf. on High Performance Computing and Communication & IEEe
Int. Conf. on Embedded Software and Systems. IEEE, 143–150.

[23] Gordon E Moon, Hyoukjun Kwon, Geonhwa Jeong, Prasanth Chatarasi,
Sivasankaran Rajamanickam, and Tushar Krishna. 2021. Evaluating Spatial Ac-
celerator Architectures with Tiled Matrix-Matrix Multiplication. arXiv preprint
arXiv:2106.10499 (2021).

[24] Gideon Nimako, Ekow J Otoo, and Daniel Ohene-Kwofie. 2012. Fast parallel algo-
rithms for blocked dense matrix multiplication on shared memory architectures.
In Int. Conf. on Algorithms and Architectures for Parallel Processing. Springer,
443–457.

[25] OpenMP Architecture Review Board. 2018. OpenMP Application Program-
ming Interface. https://www.openmp.org/wp-content/uploads/OpenMP-API-
Specification-5.0.pdf Accessed: 2019-03-24.

[26] Yoosang Park, Raehyun Kim, Thi My Tuyen Nguyen, and Jaeyoung Choi. 2021.
Improving blocked matrix-matrix multiplication routine by utilizing AVX-512
instructions on intel knights landing and xeon scalable processors. Cluster
Computing (2021), 1–11.

[27] J. M. Perez, V. Beltran, J. Labarta, and E. Ayguadé. 2017. Improving the Integration
of Task Nesting and Dependencies in OpenMP. In IEEE IPDPS. 809–818. https:
//doi.org/10.1109/IPDPS.2017.69

[28] Solmaz Salehian, Jiawen Liu, and Yonghong Yan. 2017. Comparison of threading
programming models. In IEEE IPDPSW. IEEE, 766–774.

[29] Tyler M Smith, Robert Van De Geijn, Mikhail Smelyanskiy, Jeff R Hammond, and
Field G Van Zee. 2014. Anatomy of high-performance many-threaded matrix
multiplication. In IEEE IPDPS. IEEE, 1049–1059.

[30] Guangming Tan, Linchuan Li, Sean Triechle, Everett Phillips, Yungang Bao, and
Ninghui Sun. 2011. Fast implementation of DGEMM on Fermi GPU. In Int. Conf.
for High Performance Computing, Networking, Storage and Analysis. 1–11.

[31] Xavier Teruel, Michael Klemm, Kelvin Li, Xavier Martorell, Stephen L Olivier,
and Christian Terboven. 2013. A proposal for task-generating loops in OpenMP.
In Int. Workshop on OpenMP. Springer, 1–14.

[32] Pedro Valero-Lara, Ivan Martinez-Perez, Sergi Mateo, Raül Sirvent, Vicenç Bel-
tran, Xavier Martorell, and Jesús Labarta. 2018. Variable batched DGEMM. In
Euromicro Int. Conf. on Parallel, Distributed and Network-based Processing (PDP).
IEEE, 363–367.

[33] Field G Van Zee and Robert A Van De Geijn. 2015. BLIS: A framework for rapidly
instantiating BLAS functionality. ACM Transactions on Mathematical Software
(TOMS) 41, 3 (2015), 1–33.

[34] Zhang Xianyi, Wang Qian, and Werner Saar. 2021. OpenBLAS: An optimized
BLAS library. URL: http://xianyi. github. io/OpenBLAS (2021).

https://developer.amd.com/wordpress/media/2012/10/acml_userguide.pdf\.pdf
https://developer.amd.com/wordpress/media/2012/10/acml_userguide.pdf\.pdf
https://developer.amd.com/wp-content/resources/AOCL_User%20Guide_3.0.pdf/
https://developer.amd.com/wp-content/resources/AOCL_User%20Guide_3.0.pdf/
https://doi.org/10.1109/TPDS.2017.2766064
https://doi.org/10.1145/3437801.3441601
https://doi.org/10.1145/77626.79170
https://doi.org/10.1109/HiPC.2019.00053
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://doi.org/10.1109/IPDPS.2017.69
https://doi.org/10.1109/IPDPS.2017.69

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Sequential Implementation of the GEMM
	2.2 Identifying Parallelization Opportunities
	2.3 Parallel Fork-join Implementation
	2.4 Task-based Models & OmpSs-2 Advanced Features

	3 Optimized Task-based GEMM Implementation
	3.1 Generic Task-based Implementation
	3.2 OmpSs-2 Taskloop Variant
	3.3 OmpSs-2 Task For Variant
	3.4 ASOC: Automatic Selection of Optimal Configurations

	4 Evaluation
	4.1 Methodology
	4.2 Performance Evaluation
	4.3 Energy Consumption Evaluation
	4.4 Cholesky Decomposition Use-case

	5 Related Work
	6 Conclusions and Future Work
	References

