49 research outputs found

    Insights into the functionality and druggability of the homodimerization of human papillomavirus E6 oncoprotein

    Get PDF
    High-risk human papillomaviruses (HR-HPV), typified by HPV16 and HPV18, are the cause of several epithelial cancers, including cervical, oropharyngeal, and anogenital carcinomas. The mechanisms by which HR-HPV infections lead to malignant cell transformation rely mainly on the activities of two viral oncoproteins, E6 and E7, which synergistically act to transform and immortalize the infected cell. E6 is considered the main oncoprotein responsible for cellular transformation, since its sustained expression and transforming activity are key elements for tumor progression. Recent structural and mutational studies revealed the importance of a conserved alpha-helix (α2) in the N-terminal domain of E6 for the productive degradation of p53. Indeed, a few key residues of the α2-helix form a hydrophobic pocket on E6 protein surface which was shown to be crucially involved in the interaction with p53. Notably, the α2-helix was previously characterized to be important also for E6 self-association, an event poorly understood that involves the same amino acids important for the binding to p53. Thus, the hydrophobic pocket corresponding to the α2-helix of E6 seems to be important for different protein-protein interactions and represents a new attractive target for the development of anti-E6 compounds, since no specific anti-HPV drugs exist so far. In the present PhD thesis we demonstrate that HPV16 E6 can dimerize not only in vitro but also in cells, and the dimerization is specifically driven by the α2-helix. In addition, our results suggest that the homodimerization of E6 is not required for the degradation of p53 and thus these two interactions, i.e., the binding of E6 to p53 and E6 self-association, likely occur independently of each other and probably in different cellular compartments. Furthermore, we observed that E6 induces the upregulation of TAZ which is, together with YAP, the main transducer of the Hippo signaling pathway, controlling organ size, tumorigenesis and metastasis. Strikingly, this process seems to require E6 self-association, since dimerization-defective E6 mutants are unable to upregulate TAZ in transfected cells. Finally, with the goal to develop dual inhibitors that could block the protein-protein interactions occurring on the α2-helix of the viral oncoprotein, we performed in silico drug screenings, taking advantage of the available structural models, and identified some candidate compounds fitting on the hydrophobic core of the α2-helix of E6. We then evaluated their ability to impair both E6 self-association and the E6-mediated degradation of p53. Strikingly, we identified one compound able to block both interactions, thus representing a candidate dual inhibitor, which could also induce the downregulation of E6 protein levels in parallel to its ability to rescue p53 in transfected cells. This compound also exhibited specific anti-proliferative and anti-clonogenic activities against HPV-positive cells. In conclusion, the present study successfully investigated and elucidated the potential role of E6 homodimerization with regard to the transforming activities of the viral oncoprotein, and demonstrated that targeting the α2-helix of high-risk E6 proteins may represent a novel fascinating strategy for the development of anti-E6 compounds

    Daclatasvir plasma level and resistance selection in HIV patients with hepatitis C virus cirrhosis treated with daclatasvir, sofosbuvir, and ribavirin

    Get PDF
    ObjectivesEffective treatment with direct-acting antiviral drugs against hepatitis C virus (HCV) is a medical need in cirrhotic HIV–HCV co-infected patients.MethodsThis study investigated the plasma levels of daclatasvir (DCV) and ribavirin (RBV) in HIV–HCV co-infected subjects treated with DCV, sofosbuvir, and RBV. Drug concentrations were quantified using validated high-performance liquid chromatography methods with ultraviolet detection. The HCV non-structural protein 5A and non-structural protein 5B coding regions were analyzed by population-based sequencing.ResultsDCV was dosed at week 4 and at week 8 of treatment, and RBV at week 8. One patient had the lowest DCV level, corresponding to 32.7% of the overall median value of the other patients at week 4 and about 40% at week 8. The Y93H variant was detected in this subject at weeks 8, 16, and 20 of treatment, but not before treatment or at day 2, and the patient experienced virological failure. Another subject with the Y93H variant at baseline and appropriate DCV levels had HCV RNA <12 IU/ml at week 12 and undetectable at week 16.ConclusionsSub-optimal DCV drug levels allow the selection of resistance-associated variants and fail to contribute to antiviral activity. No definite reason for the low DCV level was found. Quantifying the drug is suggested in difficult-to-treat patients

    Imatinib mesylate in the treatment of newly diagnosed or refractory/resistant c-KIT positive acute myeloid leukemia. Results of an Italian Multicentric Phase II Study

    Get PDF
    We evaluated safety and efficacy of imatinib (600 mg) in 36 c-KIT+ acute myeloid leukemia patients not amenable to receive conventional chemotherapy. No patient achieved complete remission. One patient obtained a hematologic improvement (platelet increase with transfusion independence). Median overall survival was 3 months (0.5-44+). Non-hematologic toxicity was overall mild

    Imatinib mesylate in the treatment of newly diagnosed or refractory/resistant c-KIT positive acute myeloid leukemia. Results of an Italian Multicentric Phase II Study

    Get PDF
    We evaluated safety and efficacy of imatinib (600 mg) in 36 c-KIT+ acute myeloid leukemia patients not amenable to receive conventional chemotherapy. No patient achieved complete remission. One patient obtained a hematologic improvement (platelet increase with transfusion independence). Median overall survival was 3 months (0.5-44+). Non-hematologic toxicity was overall mild

    Effect of viral storm in patients admitted to intensive care units with severe COVID-19 in Spain: a multicentre, prospective, cohort study

    Get PDF
    Background: The contribution of the virus to the pathogenesis of severe COVID-19 is still unclear. We aimed to evaluate associations between viral RNA load in plasma and host response, complications, and deaths in critically ill patients with COVID-19. Methods: We did a prospective cohort study across 23 hospitals in Spain. We included patients aged 18 years or older with laboratory-confirmed SARS-CoV-2 infection who were admitted to an intensive care unit between March 16, 2020, and Feb 27, 2021. RNA of the SARS-CoV-2 nucleocapsid region 1 (N1) was quantified in plasma samples collected from patients in the first 48 h following admission, using digital PCR. Patients were grouped on the basis of N1 quantity: VIR-N1-Zero (2747 N1 copies per mL). The primary outcome was all-cause death within 90 days after admission. We evaluated odds ratios (ORs) for the primary outcome between groups using a logistic regression analysis. Findings: 1068 patients met the inclusion criteria, of whom 117 had insufficient plasma samples and 115 had key information missing. 836 patients were included in the analysis, of whom 403 (48%) were in the VIR-N1-Low group, 283 (34%) were in the VIR-N1-Storm group, and 150 (18%) were in the VIR-N1-Zero group. Overall, patients in the VIR-N1-Storm group had the most severe disease: 266 (94%) of 283 patients received invasive mechanical ventilation (IMV), 116 (41%) developed acute kidney injury, 180 (65%) had secondary infections, and 148 (52%) died within 90 days. Patients in the VIR-N1-Zero group had the least severe disease: 81 (54%) of 150 received IMV, 34 (23%) developed acute kidney injury, 47 (32%) had secondary infections, and 26 (17%) died within 90 days (OR for death 0·30, 95% CI 0·16-0·55; p<0·0001, compared with the VIR-N1-Storm group). 106 (26%) of 403 patients in the VIR-N1-Low group died within 90 days (OR for death 0·39, 95% CI 0·26-0·57; p<0·0001, compared with the VIR-N1-Storm group). Interpretation: The presence of a so-called viral storm is associated with increased all-cause death in patients admitted to the intensive care unit with severe COVID-19. Preventing this viral storm could help to reduce poor outcomes. Viral storm could be an enrichment marker for treatment with antivirals or purification devices to remove viral components from the blood.This work was supported by grants from the Instituto de Salud Carlos III (FONDO-COVID19, COV20/00110, CIBERES, 06/06/0028; AT), Proyectos de InvestigaciĂłn en Salud (PI19/00590; JFB-M), Miguel Servet (CP20/00041; DdG-C), Sara Borrell (CD018/0123; APT), and Predoctorales de FormaciĂłn en InvestigaciĂłn en Salud (FI20/00278; AdF). We also received funds from Programa de Donaciones Estar Preparados, UNESPA (Madrid, Spain), and from the Canadian Institutes of Health Research (CIHR OV2–170357; DJK and JFB-M), Research Nova Scotia, Li-Ka Shing Foundation (DJK), and finally by a Research Grant 2020 from ESCMID (APT). COV20/00110, PI19/00590, CP20/00041, CD018/0123, FI20/00278 were co-funded by European Regional Development Fund and European Social Fund (A way to make Europe, and Investing in your future). We thank the IRB-Lleida Biobank 119 (B.0000682) and Plataforma Biobancos PT17/0015/0027 in Lleida, the Hospital Clinic Barcelona (HCB)-IDIBAPS biobank in Barcelona, and the National DNA Bank and the Hospital Universitario de Salamanca biobank (both in Salamanca) for their logistical support with sample processing and storage. We are indebted to the FundaciĂł GlĂČria Soler for its contribution and support to the COVIDBANK of HCBIDIBAPS Biobank. This work was not supported by any pharmaceutical company or other agency.S

    The Molecular Assembly of Amyloid AÎČ Controls Its Neurotoxicity and Binding to Cellular Proteins

    Get PDF
    Accumulation of ÎČ-sheet-rich peptide (AÎČ) is strongly associated with Alzheimer's disease, characterized by reduction in synapse density, structural alterations of dendritic spines, modification of synaptic protein expression, loss of long-term potentiation and neuronal cell death. AÎČ species are potent neurotoxins, however the molecular mechanism responsible for AÎČ toxicity is still unknown. Numerous mechanisms of toxicity were proposed, although there is no agreement about their relative importance in disease pathogenesis. Here, the toxicity of AÎČ 1–40 and AÎČ 1–42 monomers, oligomers or fibrils, was evaluated using the N2a cell line. A structure-function relationship between peptide aggregation state and toxic properties was established. Moreover, we demonstrated that AÎČ toxic species cross the plasma membrane, accumulate in cells and bind to a variety of internal proteins, especially on the cytoskeleton and in the endoplasmatic reticulum (ER). Based on these data we suggest that numerous proteins act as AÎČ receptors in N2a cells, triggering a multi factorial toxicity

    A blood microRNA classifier for the prediction of ICU mortality in COVID-19 patients: a multicenter validation study

    Get PDF
    Background: The identification of critically ill COVID-19 patients at risk of fatal outcomes remains a challenge. Here, we first validated candidate microRNAs (miRNAs) as biomarkers for clinical decision-making in critically ill patients. Second, we constructed a blood miRNA classifier for the early prediction of adverse outcomes in the ICU. Methods: This was a multicenter, observational and retrospective/prospective study including 503 critically ill patients admitted to the ICU from 19 hospitals. qPCR assays were performed in plasma samples collected within the first 48 h upon admission. A 16-miRNA panel was designed based on recently published data from our group. Results: Nine miRNAs were validated as biomarkers of all-cause in-ICU mortality in the independent cohort of critically ill patients (FDR < 0.05). Cox regression analysis revealed that low expression levels of eight miRNAs were associated with a higher risk of death (HR from 1.56 to 2.61). LASSO regression for variable selection was used to construct a miRNA classifier. A 4-blood miRNA signature composed of miR-16-5p, miR-192-5p, miR-323a-3p and miR-451a predicts the risk of all-cause in-ICU mortality (HR 2.5). Kaplan‒Meier analysis confirmed these findings. The miRNA signature provides a significant increase in the prognostic capacity of conventional scores, APACHE-II (C-index 0.71, DeLong test p-value 0.055) and SOFA (C-index 0.67, DeLong test p-value 0.001), and a risk model based on clinical predictors (C-index 0.74, DeLong test-p-value 0.035). For 28-day and 90-day mortality, the classifier also improved the prognostic value of APACHE-II, SOFA and the clinical model. The association between the classifier and mortality persisted even after multivariable adjustment. The functional analysis reported biological pathways involved in SARS-CoV infection and inflammatory, fibrotic and transcriptional pathways. Conclusions: A blood miRNA classifier improves the early prediction of fatal outcomes in critically ill COVID-19 patients.11 página

    Notulae to the Italian native vascular flora: 8

    Get PDF
    In this contribution, new data concerning the distribution of native vascular flora in Italy are presented. It includes new records, confirmations, exclusions, and status changes to the Italian administrative regions for taxa in the genera Ajuga, Chamaemelum, Clematis, Convolvulus, Cytisus, Deschampsia, Eleocharis, Epipactis, Euphorbia, Groenlandia, Hedera, Hieracium, Hydrocharis, Jacobaea, Juncus, Klasea, Lagurus, Leersia, Linum, Nerium, Onopordum, Persicaria, Phlomis, Polypogon, Potamogeton, Securigera, Sedum, Soleirolia, Stachys, Umbilicus, Valerianella, and Vinca. Nomenclatural and distribution updates, published elsewhere, and corrigenda are provided as Suppl. material 1

    Prognostic implications of comorbidity patterns in critically ill COVID-19 patients: A multicenter, observational study

    Get PDF
    Background The clinical heterogeneity of COVID-19 suggests the existence of different phenotypes with prognostic implications. We aimed to analyze comorbidity patterns in critically ill COVID-19 patients and assess their impact on in-hospital outcomes, response to treatment and sequelae. Methods Multicenter prospective/retrospective observational study in intensive care units of 55 Spanish hospitals. 5866 PCR-confirmed COVID-19 patients had comorbidities recorded at hospital admission; clinical and biological parameters, in-hospital procedures and complications throughout the stay; and, clinical complications, persistent symptoms and sequelae at 3 and 6 months. Findings Latent class analysis identified 3 phenotypes using training and test subcohorts: low-morbidity (n=3385; 58%), younger and with few comorbidities; high-morbidity (n=2074; 35%), with high comorbid burden; and renal-morbidity (n=407; 7%), with chronic kidney disease (CKD), high comorbidity burden and the worst oxygenation profile. Renal-morbidity and high-morbidity had more in-hospital complications and higher mortality risk than low-morbidity (adjusted HR (95% CI): 1.57 (1.34-1.84) and 1.16 (1.05-1.28), respectively). Corticosteroids, but not tocilizumab, were associated with lower mortality risk (HR (95% CI) 0.76 (0.63-0.93)), especially in renal-morbidity and high-morbidity. Renal-morbidity and high-morbidity showed the worst lung function throughout the follow-up, with renal-morbidity having the highest risk of infectious complications (6%), emergency visits (29%) or hospital readmissions (14%) at 6 months (p<0.01). Interpretation Comorbidity-based phenotypes were identified and associated with different expression of in-hospital complications, mortality, treatment response, and sequelae, with CKD playing a major role. This could help clinicians in day-to-day decision making including the management of post-discharge COVID-19 sequelae. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd
    corecore