63 research outputs found

    Time-resolved optical studies, heat dissipation and melting of Ag and Au nanoparticle systems and arrays

    Get PDF
    Transient absorption spectroscopy has been extensively used in recent years to examine the temporal response of isolated nanoparticles (NPs) to the absorption of light [1]. These studies are largely based on the use of the surface plasmon resonance (SPR) to monitor characteristics of the NP such as electronic and lattice temperature, shape and morphology as a function of time. In the case of extended Au/Ag NP structures the plasmon resonance is strongly distorted due to the inter-particle coupling effects. For example, we have observed this effect in Rhodamine dye functionalized Au nanoparticles which undergo self-assembly to form nanostructures due to the interactions between the dye molecules attached to the surfaces of the nanoparticles. Indeed the SPR splits into two with one resonance remaining in the vicinity of that of the isolated AuNPs and is generally called the transverse SPR while a second resonance due to an extended excitation spanning across multiple particles appears to the lower energies. The precise spectral energy and shape of the extended plasmon resonance depends on the inter-particle distance, the particle disposition and the number of particles involved. When the plasmon band or interband spectral region of the NP is excited by an intense pulse the photon energy absorbed by the electrons is transferred to the lattice of the NP as heat through electron-phonon coupling. Depending on the intensity of the light pulse and thus the initial electron temperature a number of outcomes are possible. The first aim of this work is to use low intensity pump pulses to study the wavelength dependence of the sub 10 ps dynamics which reflects the electron-photon scattering within the nanoparticle structure. On the other hand, the interaction of more intense light with the NPs can modify the morphology of NP systems, for example by reshaping gold nanorods into nanospheres or, in general, mediate the synthesis of metallic nanostructures. At medium intensities the initial temperature is sufficient to induce melting of the NPs which can lead to morphological changes of the NP structure. Higher intensities can cause other effects such as photofragmentation of the NPs, release of stabiliser molecules from the surface of the NPs or even Coulomb explosion due to multiple ionisation events. The second aim of this work is to concentrate on the effects of medium intensity laser excitation of a self-assembled Au/Ag NP systems. The NP system is excited by a femtosecond laser pulse of different wavelengths allowing selective deposition of energy and the subsequent heat dissipation through phonon-phonon coupling and morphological changes are monitored in time by recording transient absorption spectra in the visible range. This wavelength range makes it possible to follow the phonon-phonon coupling effects on the recovery of the bleaching of both the transverse and extended plasmon resonances of the NP system. As the intensity of the pump pulse is increased it can be seen that the NPs are no longer able to dissipate all of the heat before arrival of subsequent laser pulses thus leading to melting of the NP structure and strong changes in the plasmon response of the system. The overall aim of this study is to fully understand the delocalized electron-phonon coupling in the extended plasmon region of the NP structures and to use this knowledge to control the melting in nanostructures. The methods developed can be useful for plasmon mediated nano-engineerin

    Smart decomposition of cyclic alanine-alanine dipeptide by VUV radiation: a seed for the synthesis of biologically relevant species

    Full text link
    A combined experimental and theoretical study shows how the interaction of VUV radiation with cyclo-(alanine-alanine), one of the 2,5-diketopiperazines (DKPs), produces reactive oxazolidinone intermediates. The theoretical simulations reveal that the interaction of these intermediates with other neutral and charged fragments, released in the molecular decomposition, leads either to the reconstruction of the cyclic dipeptide or to the formation of longer linear peptide chains. These results may explain how DKPs could have, on one hand, survived hostile chemical environments and, on the other, provided the seed for amino acid polymerization. Shedding light on the mechanisms of production of such prebiotic building blocks is of paramount importance to understanding the abiotic synthesis of relevant biologically active compoundsThis article is based upon work from COST action CA18212 - Molecular Dynamics in the GAS phase (MD-GAS), supported by COST (European Cooperation in Science and Technology). The authors acknowledge the generous allocation of computer time at the Centro de Computación Cientıfí ca at the Universidad Autonoma de Madrid (CCC-UAM). This work ́ was partially supported by MICINN (Spanish Ministry of Science and Innovation) project PID2019-110091GB-I00, the “Marıa de Maeztu ́ ” (CEX2018-000805-M) Program for Centers of Excellence in R&D, MAECI Italy-Sweden project “Novel molecular tools for the exploration of the nanoworld”, and PRIN 20173B72NB project “Predicting and controlling the fate of biomolecules driven by extreme-ultraviolet radiation”. D.B.-L. acknowledges the FPI grant associated with MICINN project CTQ2016-76061-P. H.Z. acknowledges the Swedish Research Council for the individual project grant with contract no. 2020- 0343

    Gas Phase Oxidation of Carbon Monoxide by Sulfur Dioxide Radical Cation: Reaction Dynamics and Kinetic Trend With the Temperature

    Get PDF
    Gas phase ion chemistry has fundamental and applicative purposes since it allows the study of the chemical processes in a solvent free environment and represents models for reactions occurring in the space at low and high temperatures. In this work the ion-molecule reaction of sulfur dioxide ion SO2.+ with carbon monoxide CO is investigated in a joint experimental and theoretical study. The reaction is a fast and exothermic chemical oxidation of CO into more stable CO2 by a metal free species, as SO2.+, excited into ro-vibrational levels of the electronic ground state by synchrotron radiation. The results show that the reaction is hampered by the enhancement of internal energy of sulfur dioxide ion and the only ionic product is SO.+. The theoretical approach of variational transition state theory (VTST) based on density functional electronic structure calculations, shows an interesting and peculiar reaction dynamics of the interacting system along the reaction path. Two energy minima corresponding to [SO2–CO].+ and [OS–OCO].+ complexes are identified. These minima are separated by an intersystem crossing barrier which couples the bent 3B2 state of CO2 with C2v symmetry and the 1A1 state with linear D∞h symmetry. The spin and charge reorganization along the minimum energy path (MEP) are analyzed and eventually the charge and spin remain allocated to the SO.+ moiety and the stable CO2 molecule is easily produced. There is no bottleneck that slows down the reaction and the values of the rate coefficient k at different temperatures are calculated with capture theory. A value of 2.95 × 10−10 cm3s−1molecule−1 is obtained at 300 K in agreement with the literature experimental measurement of 3.00 × 10−10 ± 20% cm3s−1molecule−1, and a negative trend with temperature is predicted consistently with the experimental observations

    A systematic study of the valence electronic structure of cyclo(Gly–Phe), cyclo(Trp–Tyr) and cyclo(Trp–Trp) dipeptides in the gas phase

    Get PDF
    The electronic energy levels of cyclo(glycine–phenylalanine), cyclo(tryptophan–tyrosine) and cyclo(tryptophan–tryptophan) dipeptides are investigated with a joint experimental and theoretical approach. Experimentally, valence photoelectron spectra in the gas phase are measured using VUV radiation. Theoretically, we first obtain low-energy conformers through an automated conformer–rotamer ensemble sampling scheme based on tight-binding simulations. Then, different first principles computational schemes are considered to simulate the spectra: Hartree–Fock (HF), density functional theory (DFT) within the B3LYP approximation, the quasi-particle GW correction, and the quantumchemistry CCSD method. Theory allows assignment of the main features of the spectra. A discussion on the role of electronic correlation is provided, by comparing computationally cheaper DFT scheme (and GW) results with the accurate CCSD method

    Competitive dehydrogenation and backbone fragmentation of superhydrogenated PAHs: A laboratory study

    Get PDF
    Superhydrogenated polycyclic aromatic hydrocarbons (PAHs) have been suggested to catalyze the formation of H2 in certain regions of space, but it remains unclear under which circumstances this mechanism is viable given the reduced carbon backbone stability of superhydrogenated PAHs. We report a laboratory study on the stability of the smallest pericondensed PAH, pyrene (C16H10+N , with N = 4, 6, and 16 additional H atoms), against photodestruction by single vacuum ultraviolet photons using the photoelectron-photoion coincidence technique. For N = 4, we observe a protective effect of hydrogenation against the loss of native hydrogens, in the form of an increase in the appearance energies of the and C16H8+ daughter ions compared to those reported for pristine pyrene (C16H10). No such effect is seen for N = 6 or 16, where the weakening effect of replacing aromatic bonds with aliphatic ones outweighs the buffering effect of the additional hydrogen atoms. The onset of fragmentation occurs at similar internal energies for N = 4 and 6, but is significantly lower for N = 16. In all three cases, H-loss and C m H n -loss (m ≄ 1, carbon backbone fragmentation) channels open at approximately the same energy. The branching fractions of the primary channels favor H-loss for N = 4, C m H n -loss for N = 16, and are roughly equal for the intermediate N = 6. We conclude that superhydrogenated pyrene is probably too small to support catalytic H2-formation, while trends in the current and previously reported data suggest that larger PAHs may serve as catalysts up to a certain level of hydrogenation

    Electron and ion spectroscopy of Azobenzene in the valence and core shells

    Get PDF
    Azobenzene is a prototype and building block of a class of molecules of extreme technological interest as molecularphoto-switches. We present a joint experimental and theoretical study of its response to irradiation with light across theUV to X-ray spectrum. The study of valence and inner shell photo-ionization and excitation processes, combined withmeasurement of valence photoelectron-photoion coincidence (PEPICO) and of mass spectra across the core thresholdsprovides a detailed insight onto the site- and state-selected photo-induced processes. Photo-ionization and excita-tion measurements are interpreted via the multi-configurational restricted active space self-consistent field (RASSCF)method corrected by second order perturbation theory (RASPT2). Using static modelling, we demonstrate that thecarbon and nitrogen K edges of Azobenzene are suitable candidates for exploring its photoinduced dynamics thanks tothe transient signals appearing in background-free regions of the NEXAFS and XP

    Carbon and Nitrogen K-Edge NEXAFS Spectra of Indole, 2,3-Dihydro-7-azaindole, and 3-Formylindole

    Get PDF
    The near-edge X-ray absorption fine structure (NEXAFS) spectra of indole, 2,3-dihydro-7-azaindole, and 3-formylindole in the gas phase have been measured at the carbon and nitrogen K-edges. The spectral features have been interpreted based on density functional theory (DFT) calculations within the transition potential (TP) scheme, which is accurate enough for a general description of the measured C 1s NEXAFS spectra as well as for the assignment of the most relevant features. For the nitrogen K-edge, the agreement between experimental data and theoretical spectra calculated with TP-DFT was not quite satisfactory. This discrepancy was mainly attributed to the many-body effects associated with the excitation of the core electron, which are better described using the time-dependent density functional theory (TDDFT) with the range-separated hybrid functional CAM-B3LYP. An assignment of the measured N 1s NEXAFS spectral features has been proposed together with a complete description of the observed resonances. Intense transitions from core levels to unoccupied antibonding π* states as well as several transitions with mixed-valence/Rydberg or pure Rydberg character have been observed in the C and N K-edge spectra of all investigated indoles

    The role of the partner atom and resonant excitation energy in ICD in rare gas dimers

    Get PDF
    We show experimental evidence for Interatomic Coulombic Decay (ICD) in mixed rare gas dimers following resonant Auger decay. A velocity map imaging apparatus together with a cooled supersonic beam containing Ar2, ArNe and ArKr dimers was used to record electron VMI images in coincidence with two mass selected ions following excitation on five resonances converging to the Ar+ 2p−11/2 and 2p−13/2 thresholds using the synchrotron radiation. The results show that the kinetic energy distribution of the ICD electrons observed in coincidence with the ions from Coulomb explosion of the dimers depends on the partner ion and resonant photon energy

    Charge and energy flows in ionised thymidine

    Full text link
    We present a combined experimental and theoretical study of the ionisation and fragmentation of the nucleoside thymidine in the gas phase. Two sources of ionisation/excitation are used, namely UV photons and low-energy multiply charged ions, associated with coincidences measurements, respectively photoelec- tron/photofragment (PEPICO) and fragment/fragment. Coupling these experiments with quantum chemistry calculations, we obtain a complete picture of the fragmentation dynamics, in particular the charge and energy transfers within the molecular edific
    • 

    corecore