119 research outputs found

    Small integral membrane protein 10 like 1 downregulation enhances differentiation of adipose progenitor cells

    Get PDF
    Small integral membrane protein 10 like 1 (SMIM10L1) was identified by RNA sequencing as the most significantly downregulated gene in Phosphatase and Tensin Homologue (PTEN) knockdown adipose progenitor cells (APCs). PTEN is a tumor suppressor that antagonizes the growth promoting Phosphoinositide 3-kinase (PI3K)/AKT/mechanistic Target of Rapamycin (mTOR) cascade. Diseases caused by germline pathogenic variants in PTEN are summarized as PTEN Hamartoma Tumor Syndrome (PHTS). This overgrowth syndrome is associated with lipoma formation, especially in pediatric patients. The mechanisms underlying this adipose tissue dysfunction remain elusive. We observed that SMIM10L1 downregulation in APCs led to an enhanced adipocyte differentiation in two- and three-dimensional cell culture and increased expression of adipogenesis markers. Furthermore, SMIM10L1 knockdown cells showed a decreased expression of PTEN, pointing to a mutual crosstalk between PTEN and SMIM10L1. In line with these observations, SMIM10L1 knockdown cells showed increased activation of PI3K/AKT/mTOR signaling and concomitantly increased expression of the adipogenic transcription factor SREBP1. We computationally predicted an α-helical structure and membrane association of SMIM10L1. These results support a specific role for SMIM10L1 in regulating adipogenesis, potentially by increasing PI3K/AKT/mTOR signaling, which might be conducive to lipoma formation in pediatric patients with PHTS

    Evidence for Quantum Interference in SAMs of Arylethynylene Thiolates in Tunneling Junctions with Eutectic Ga-In (EGaIn) Top-Contacts

    Get PDF
    This paper compares the current density (J) versus applied bias (V) of self-assembled monolayers (SAMs) of three different ethynylthiophenol-functionalized anthracene derivatives of approximately the same thickness with linear-conjugation (AC), cross-conjugation (AQ), and broken-conjugation (AH) using liquid eutectic Ga-In (EGaIn) supporting a native skin (~1 nm thick) of Ga2O3 as a nondamaging, conformal top-contact. This skin imparts non-Newtonian rheological properties that distinguish EGaIn from other top-contacts; however, it may also have limited the maximum values of J observed for AC. The measured values of J for AH and AQ are not significantly different (J ≈ 10-1 A/cm2 at V = 0.4 V). For AC, however, J is 1 (using log averages) or 2 (using Gaussian fits) orders of magnitude higher than for AH and AQ. These values are in good qualitative agreement with gDFTB calculations on single AC, AQ, and AH molecules chemisorbed between Au contacts that predict currents, I, that are 2 orders of magnitude higher for AC than for AH at 0 < |V| < 0.4 V. The calculations predict a higher value of I for AQ than for AH; however, the magnitude is highly dependent on the position of the Fermi energy, which cannot be calculated precisely. In this sense, the theoretical predictions and experimental conclusions agree that linearly conjugated AC is significantly more conductive than either cross-conjugated AQ or broken conjugate AH and that AQ and AH cannot necessarily be easily differentiated from each other. These observations are ascribed to quantum interference effects. The agreement between the theoretical predictions on single molecules and the measurements on SAMs suggest that molecule-molecule interactions do not play a significant role in the transport properties of AC, AQ, and AH.

    The registry of the German Network for Systemic Scleroderma: frequency of disease subsets and patterns of organ involvement

    Get PDF
    Objective. Systemic sclerosis (SSc) is a rare, heterogeneous disease, which affects different organs and therefore requires interdisciplinary diagnostic and therapeutic management. To improve the detection and follow-up of patients presenting with different disease manifestations, an interdisciplinary registry was founded with contributions from different subspecialties involved in the care of patients with SSc

    Interleukin-2/interferon-α2a/13-retinoic acid-based chemoimmunotherapy in advanced renal cell carcinoma: results of a prospectively randomised trial of the German Cooperative Renal Carcinoma Chemoimmunotherapy Group (DGCIN)

    Get PDF
    We performed a prospectively randomised clinical trial to compare the efficacy of four subcutaneous interleukin-2-(sc-IL-2) and sc interferon-α2a (sc-IFN-α2a)-based outpatient regimens in 379 patients with progressive metastatic renal cell carcinoma. Patients with lung metastases, an erythrocyte sedimentation rate â©œ70 mm h−1 and neutrophil counts â©œ6000 Όl−1 (group I) were randomised to arm A: sc-IL-2, sc-IFN-α2a, peroral 13-cis-retinoic acid (po-13cRA) (n=78), or arm B: arm A plus inhaled-IL-2 (n=65). All others (group II) were randomised to arm C: arm A plus intravenous 5-fluorouracil (iv-5-FU) (n=116), or arm D: arm A plus po-Capecitabine (n=120). Median overall survival (OS) was 22 months (arm A; 3-year OS: 29.7%) and 18 months (arm B; 3-year OS: 29.2%) in group I, and 18 months (arm C; 3-year OS: 25.7%) and 16 months (arm D; 3-year OS: 32.6%) in group II. There were no statistically significant differences in OS, progression-free survival, and objective response between arms A and B, and between arms C and D, respectively. Given the known therapeutic efficacy of sc-IL-2/sc-INF-α2a/po-13cRA-based outpatient chemoimmunotherapies, our results did not establish survival advantages in favour of po-Capecitabine vs iv-5-FU, and in favour of short-term inhaled-IL-2 in patients with advanced renal cell carcinoma receiving systemic cytokines

    A phase II study of vinflunine in bladder cancer patients progressing after first-line platinum-containing regimen

    Get PDF
    A multicentre phase II trial to determine the efficacy of vinflunine as second-line therapy in patients with advanced transitional cell carcinoma (TCC) of the bladder; secondary objectives were to assess duration of response, progression-free survival (PFS) and overall survival (OS), and to evaluate the toxicity associated with this treatment. Patients had tumours that failed or progressed after first-line platinum-containing regimens for advanced or metastatic disease, or had progressive disease after platinum-containing chemotherapy given with adjuvant or neoadjuvant intent. Response and adverse events were assessed according to WHO criteria and NCI-CTC (version 2), respectively. Out of 51 patients treated with 320 mg m−2 of vinflunine, nine patients responded to the therapy yielding an overall response rate of 18% (95% CI: 8.4–30.9%), and 67% (95%CI: 52.1–79.3%) achieved disease control (PR+SD). Of note, responses were seen in patients with relatively poor prognostic factors such as a short (<12 months) interval from prior platinum therapy (19%, including an 11% response rate in those progressing <3 months after platinum treatment), prior treatment for metastatic disease (24%), prior treatment with vinca alkaloids (14%) and visceral involvement (20%). The median duration of response was 9.1 months (95% CI: 4.2–15.0) and the median PFS was 3.0 months (95% CI: 2.4–3.8). The median OS was 6.6 months (95% CI: 4.8–7.6). The main haematological toxicity was grade 3–4 neutropenia, observed in 67% of patients (42% of cycles). Febrile neutropenia was observed in five patients (10%) and among them two were fatal. Constipation was frequently observed (but was manageable and noncumulative) and was grade 3–4 in only 8% of patients. The incidence of grade 3 nausea and vomiting was very low (4 and 6% of patients, respectively). Neither grade 3–4 sensory neuropathy nor severe venous irritation was observed. Moreover, and of importance in this particular study population, no grade 3–4 renal function impairment was observed. Vinflunine is an active agent for the treatment of platinum-pretreated bladder cancer, and these results warrant further investigation in phase III trials, either as monotherapy or in combination with other agents as treatment of advanced/metastatic TCC of the bladder

    In Vitro and In Vivo Studies Identify Important Features of Dengue Virus pr-E Protein Interactions

    Get PDF
    Flaviviruses bud into the endoplasmic reticulum and are transported through the secretory pathway, where the mildly acidic environment triggers particle rearrangement and allows furin processing of the prM protein to pr and M. The peripheral pr peptide remains bound to virus at low pH and inhibits virus-membrane interaction. Upon exocytosis, the release of pr at neutral pH completes virus maturation to an infectious particle. Together this evidence suggests that pr may shield the flavivirus fusion protein E from the low pH environment of the exocytic pathway. Here we developed an in vitro system to reconstitute the interaction of dengue virus (DENV) pr with soluble truncated E proteins. At low pH recombinant pr bound to both monomeric and dimeric forms of E and blocked their membrane insertion. Exogenous pr interacted with mature infectious DENV and specifically inhibited virus fusion and infection. Alanine substitution of E H244, a highly conserved histidine residue in the pr-E interface, blocked pr-E interaction and reduced release of DENV virus-like particles. Folding, membrane insertion and trimerization of the H244A mutant E protein were preserved, and particle release could be partially rescued by neutralization of the low pH of the secretory pathway. Thus, pr acts to silence flavivirus fusion activity during virus secretion, and this function can be separated from the chaperone activity of prM. The sequence conservation of key residues involved in the flavivirus pr-E interaction suggests that this protein-protein interface may be a useful target for broad-spectrum inhibitors

    ViennaRNA Package 2.0

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Secondary structure forms an important intermediate level of description of nucleic acids that encapsulates the dominating part of the folding energy, is often well conserved in evolution, and is routinely used as a basis to explain experimental findings. Based on carefully measured thermodynamic parameters, exact dynamic programming algorithms can be used to compute ground states, base pairing probabilities, as well as thermodynamic properties.</p> <p>Results</p> <p>The <monospace>ViennaRNA</monospace> Package has been a widely used compilation of RNA secondary structure related computer programs for nearly two decades. Major changes in the structure of the standard energy model, the <it>Turner 2004 </it>parameters, the pervasive use of multi-core CPUs, and an increasing number of algorithmic variants prompted a major technical overhaul of both the underlying <monospace>RNAlib</monospace> and the interactive user programs. New features include an expanded repertoire of tools to assess RNA-RNA interactions and restricted ensembles of structures, additional output information such as <it>centroid </it>structures and <it>maximum expected accuracy </it>structures derived from base pairing probabilities, or <it>z</it>-<it>scores </it>for locally stable secondary structures, and support for input in <monospace>fasta</monospace> format. Updates were implemented without compromising the computational efficiency of the core algorithms and ensuring compatibility with earlier versions.</p> <p>Conclusions</p> <p>The <monospace>ViennaRNA Package 2.0</monospace>, supporting concurrent computations <monospace>via OpenMP</monospace>, can be downloaded from <url>http://www.tbi.univie.ac.at/RNA</url>.</p

    In Silico Screening Based on Predictive Algorithms as a Design Tool for Exon Skipping Oligonucleotides in Duchenne Muscular Dystrophy

    Get PDF
    The use of antisense 'splice-switching' oligonucleotides to induce exon skipping represents a potential therapeutic approach to various human genetic diseases. It has achieved greatest maturity in exon skipping of the dystrophin transcript in Duchenne muscular dystrophy (DMD), for which several clinical trials are completed or ongoing, and a large body of data exists describing tested oligonucleotides and their efficacy. The rational design of an exon skipping oligonucleotide involves the choice of an antisense sequence, usually between 15 and 32 nucleotides, targeting the exon that is to be skipped. Although parameters describing the target site can be computationally estimated and several have been identified to correlate with efficacy, methods to predict efficacy are limited. Here, an in silico pre-screening approach is proposed, based on predictive statistical modelling. Previous DMD data were compiled together and, for each oligonucleotide, some 60 descriptors were considered. Statistical modelling approaches were applied to derive algorithms that predict exon skipping for a given target site. We confirmed (1) the binding energetics of the oligonucleotide to the RNA, and (2) the distance in bases of the target site from the splice acceptor site, as the two most predictive parameters, and we included these and several other parameters (while discounting many) into an in silico screening process, based on their capacity to predict high or low efficacy in either phosphorodiamidate morpholino oligomers (89% correctly predicted) and/or 2'O Methyl RNA oligonucleotides (76% correctly predicted). Predictions correlated strongly with in vitro testing for sixteen de novo PMO sequences targeting various positions on DMD exons 44 (RÂČ 0.89) and 53 (RÂČ 0.89), one of which represents a potential novel candidate for clinical trials. We provide these algorithms together with a computational tool that facilitates screening to predict exon skipping efficacy at each position of a target exon

    Genomic and transcriptomic changes complement each other in the pathogenesis of sporadic Burkitt lymphoma

    Get PDF
    Burkitt lymphoma (BL) is the most common B-cell lymphoma in children. Within the International Cancer Genome Consortium (ICGC), we performed whole genome and transcriptome sequencing of 39 sporadic BL. Here, we unravel interaction of structural, mutational, and transcriptional changes, which contribute to MYC oncogene dysregulation together with the pathognomonic IG-MYC translocation. Moreover, by mapping IGH translocation breakpoints, we provide evidence that the precursor of at least a subset of BL is a B-cell poised to express IGHA. We describe the landscape of mutations, structural variants, and mutational processes, and identified a series of driver genes in the pathogenesis of BL, which can be targeted by various mechanisms, including IG-non MYC translocations, germline and somatic mutations, fusion transcripts, and alternative splicing
    • 

    corecore