4,247 research outputs found

    Performance analysis of a flux-concentrating field-modulated permanent-magnet machine for direct-drive applications

    Get PDF
    published_or_final_versio

    Exploring Planets with Directed Aerial Robot Explorers

    Get PDF
    Global Aerospace Corporation (GAC) is developing a revolutionary system architecture for exploration of planetary atmospheres and surfaces from atmospheric altitudes. The work is supported by the NASA Institute for Advanced Concepts (NIAC). The innovative system architecture relies upon the use of Directed Aerial Robot Explorers (DAREs), which essentially are long-duration-flight autonomous balloons with trajectory control capabilities that can deploy swarms of miniature probes over multiple target areas. Balloon guidance capabilities will offer unprecedented opportunities in high-resolution, targeted observations of both atmospheric and surface phenomena. Multifunctional microprobes will be deployed from the balloons once over the target areas, and perform a multitude of functions, such as atmospheric profiling or surface exploration, relaying data back to the balloons or an orbiter. This architecture will enable low-cost, low-energy, long-term global exploration of planetary atmospheres and surfaces. This paper focuses on a conceptual analysis of the DARE architecture capabilities and science applications for Venus, Titan and Jupiter. Preliminary simulations with simplified atmospheric models show that a relatively small trajectory control wing can enable global coverage of the atmospheres of Venus and Titan by a single balloon over a 100-day mission. This presents unique opportunities for global in situ sampling of the atmospheric composition and dynamics, atmospheric profiling over multiple sites with small dropsondes and targeted deployment of surface microprobes. At Jupiter, path guidance capabilities of the DARE platforms permits targeting localized regions of interest, such as "hot spots" or the Great Red Spot. A single DARE platform at Jupiter can sample major types of the atmospheric flows (zones and belts) over a 100-day mission. Observations by deployable probes would reveal if the differences exist in radiative, dynamic and compositional environments at these sites

    Chemical dynamics of triacetylene formation and implications to the synthesis of polyynes in Titan's atmosphere

    Get PDF
    For the last four decades, the role of polyynes such as diacetylene (HCCCCH) and triacetylene (HCCCCCCH) in the chemical evolution of the atmosphere of Saturn's moon Titan has been a subject of vigorous research. These polyacetylenes are thought to serve as an UV radiation shield in planetary environments; thus, acting as prebiotic ozone, and are considered as important constituents of the visible haze layers on Titan. However, the underlying chemical processes that initiate the formation and control the growth of polyynes have been the least understood to date. Here, we present a combined experimental, theoretical, and modeling study on the synthesis of the polyyne triacetylene (HCCCCCCH) via the bimolecular gas phase reaction of the ethynyl radical (CCH) with diacetylene (HCCCCH). This elementary reaction is rapid, has no entrance barrier, and yields the triacetylene molecule via indirect scattering dynamics through complex formation in a single collision event. Photochemical models of Titan's atmosphere imply that triacetylene may serve as a building block to synthesize even more complex polyynes such as tetraacetylene (HCCCCCCCCH)

    Structural and superconducting properties of MgB2x_{2-x}Bex_x

    Full text link
    We prepared MgB2x_{2-x}Bex_{x} (x=0x=0, 0.2, 0.3, 0.4, and 0.6) samples where B is substituted with Be. MgB2_{2} structure is maintained up to x=0.6x=0.6. In-plane and inter-plane lattice constants were found to decrease and increase, respectively. Superconducting transition temperature TcT_{c} decreases with xx. We found that the TcT_{c} decrease is correlated with in-plane contraction but is insensitive to carrier doping, which is consistent with other substitution studies such as Mg1x_{1-x}Alx_{x}B2_{2} and MgB2x_{2-x}Cx_{x}. Implication of this work is discussed in terms of the 2D nature of σ\sigma -band.Comment: 3 pages,4 figures, to be published in Phys. Rev.

    Systemic Risk in a Unifying Framework for Cascading Processes on Networks

    Full text link
    We introduce a general framework for models of cascade and contagion processes on networks, to identify their commonalities and differences. In particular, models of social and financial cascades, as well as the fiber bundle model, the voter model, and models of epidemic spreading are recovered as special cases. To unify their description, we define the net fragility of a node, which is the difference between its fragility and the threshold that determines its failure. Nodes fail if their net fragility grows above zero and their failure increases the fragility of neighbouring nodes, thus possibly triggering a cascade. In this framework, we identify three classes depending on the way the fragility of a node is increased by the failure of a neighbour. At the microscopic level, we illustrate with specific examples how the failure spreading pattern varies with the node triggering the cascade, depending on its position in the network and its degree. At the macroscopic level, systemic risk is measured as the final fraction of failed nodes, XX^\ast, and for each of the three classes we derive a recursive equation to compute its value. The phase diagram of XX^\ast as a function of the initial conditions, thus allows for a prediction of the systemic risk as well as a comparison of the three different model classes. We could identify which model class lead to a first-order phase transition in systemic risk, i.e. situations where small changes in the initial conditions may lead to a global failure. Eventually, we generalize our framework to encompass stochastic contagion models. This indicates the potential for further generalizations.Comment: 43 pages, 16 multipart figure

    Ferromagnetic transition metal implanted ZnO: a diluted magnetic semiconductor?

    Full text link
    Recently theoretical works predict that some semiconductors (e.g. ZnO) doped with magnetic ions are diluted magnetic semiconductors (DMS). In DMS magnetic ions substitute cation sites of the host semiconductor and are coupled by free carriers resulting in ferromagnetism. One of the main obstacles in creating DMS materials is the formation of secondary phases because of the solid-solubility limit of magnetic ions in semiconductor host. In our study transition metal ions were implanted into ZnO single crystals with the peak concentrations of 0.5-10 at.%. We established a correlation between structural and magnetic properties. By synchrotron radiation X-ray diffraction (XRD) secondary phases (Fe, Ni, Co and ferrite nanocrystals) were observed and have been identified as the source for ferromagnetism. Due to their different crystallographic orientation with respect to the host crystal these nanocrystals in some cases are very difficult to be detected by a simple Bragg-Brentano scan. This results in the pitfall of using XRD to exclude secondary phase formation in DMS materials. For comparison, the solubility of Co diluted in ZnO films ranges between 10 and 40 at.% using different growth conditions pulsed laser deposition. Such diluted, Co-doped ZnO films show paramagnetic behaviour. However, only the magnetoresistance of Co-doped ZnO films reveals possible s-d exchange interaction as compared to Co-implanted ZnO single crystals.Comment: 27 pages, 8 figure

    Multilocus sequence typing (MLST) analysis of Vibrio cholerae O1 El Tor isolates from Mozambique that harbour the classical CTX prophage.

    No full text
    Vibrio cholerae O1 isolates belonging to the Ogawa serotype, El Tor biotype, harbouring the classical CTX prophage were first isolated in Mozambique in 2004. Multilocus sequence typing (MLST) analysis using nine genetic loci showed that the Mozambique isolates have the same sequence type (ST) as O1 El Tor N16961, a representative of the current seventh cholera pandemic. Analysis of the CTX prophage in the Mozambique isolates indicated that there is one type of rstR in these isolates: the classical CTX prophage. It was also found that the ctxB-rstR-rstA-rstB-phs-cep fragment was PCR-amplified from these isolates, which indicates the presence of a tandem repeat of the classical CTX prophage in the genome of the Mozambique isolates. The possible origin of these isolates and the presence of the tandem repeat of the classical prophage in them implicate the presence of the classical CTX phage

    The 2003-4 multisite photometric campaign for the Beta Cephei and eclipsing star 16 (EN) Lacertae with an Appendix on 2 Andromedae, the variable comparison star

    Get PDF
    A multisite photometric campaign for the Beta Cephei and eclipsing variable 16 Lacertae is reported. 749 h of high-quality differential photoelectric Stromgren, Johnson and Geneva time-series photometry were obtained with ten telescopes during 185 nights. After removing the pulsation contribution, an attempt was made to solve the resulting eclipse light curve by means of the computer program EBOP. Although a unique solution was not obtained, the range of solutions could be constrained by comparing computed positions of the secondary component in the Hertzsprung-Russell diagram with evolutionary tracks. For three high-amplitude pulsation modes, the uvy and the Geneva UBG amplitude ratios are derived and compared with the theoretical ones for spherical-harmonic degrees l <= 4. The highest degree, l = 4, is shown to be incompatible with the observations. One mode is found to be radial, one is l = 1, while in the remaining case l = 2 or 3. The present multisite observations are combined with the archival photometry in order to investigate the long-term variation of the amplitudes and phases of the three high-amplitude pulsation modes. The radial mode shows a non-sinusoidal variation on a time-scale of 73 yr. The l = 1 mode is a triplet with unequal frequency spacing, giving rise to two beat-periods, 720.7 d and 29.1 yr. The amplitude and phase of the l = 2 or 3 mode vary on time-scales of 380.5 d and 43 yr. The light variation of 2 And, one of the comparison stars, is discussed in the Appendix.Comment: 18 pages, 19 figures, accepted for publication in MNRA

    Mars Exploration with Directed Aerial Robot Explorers

    Get PDF
    Global Aerospace Corporation (GAC) is developing a revolutionary system architecture for exploration of planetary atmospheres and surfaces from atmospheric altitudes. The work is supported by the NASA Institute for Advanced Concepts (NIAC). The innovative system architecture relies upon the use of Directed Aerial Robot Explorers (DAREs), which essentially are long‐duration‐flight autonomous balloons with trajectory control capabilities that can deploy swarms of miniature probes over multiple target areas. Balloon guidance capabilities will offer unprecedented opportunities in high‐resolution, targeted observations of both atmospheric and surface phenomena. Multifunctional microprobes will be deployed from the balloons when over the target areas, and perform a multitude of functions, such as atmospheric profiling or surface exploration, relaying data back to the balloons or an orbiter. This architecture will enable low‐cost, low‐energy, long‐term global exploration of planetary atmospheres and surfaces. A conceptual analysis of DARE capabilities and science applications for Mars is presented. Initial results of simulations indicate that a relatively small trajectory control wing can significantly change planetary balloon flight paths, especially during summer seasons in Polar Regions. This opens new possibilities for high‐resolution observations of crustal magnetic anomalies, polar layered terrain, polar clouds, dust storms at the edges of the Polar caps and of seasonal variability of volatiles in the atmosphere

    Many-body dispersions in interacting ballistic quantum wires

    Full text link
    We have measured the collective excitation spectrum of interacting electrons in one-dimension. The experiment consists of controlling the energy and momentum of electrons tunneling between two clean and closely situated, parallel quantum wires in a GaAs/AlGaAs heterostructure while measuring the resulting conductance. We measure excitation spectra that clearly deviate from the non-interacting spectrum, attesting to the importance of Coulomb interactions. Notable is an observed 30% enhancement of the velocity of the main excitation branch relative to non-interacting electrons with the same density. In short wires, finite size effects resulting from broken translational invariance are observed. Spin - charge separation is manifested through moire patterns, reflecting different spin and charge excitation velocities.Comment: 14 pages, 6 eps figures. To be published in NANOWIRE, a special issue of Solid State Communication
    corecore