24 research outputs found

    Tissue-resident macrophages regulate lymphatic vessel growth and patterning in the developing heart.

    Get PDF
    Macrophages are components of the innate immune system with key roles in tissue inflammation and repair. It is now evident that macrophages also support organogenesis, but few studies have characterized their identity, ontogeny and function during heart development. Here, we show that the distribution and prevalence of resident macrophages in the subepicardial compartment of the developing heart coincides with the emergence of new lymphatics, and that macrophages interact closely with the nascent lymphatic capillaries. Consequently, global macrophage deficiency led to extensive vessel disruption, with mutant hearts exhibiting shortened and mis-patterned lymphatics. The origin of cardiac macrophages was linked to the yolk sac and foetal liver. Moreover, the Cx3cr1 + myeloid lineage was found to play essential functions in the remodelling of the lymphatic endothelium. Mechanistically, macrophage hyaluronan was required for lymphatic sprouting by mediating direct macrophage-lymphatic endothelial cell interactions. Together, these findings reveal insight into the role of macrophages as indispensable mediators of lymphatic growth during the development of the mammalian cardiac vasculature.This work was funded by the British Heart Foundation (chair award CH/11/1/28798 and programme grant RG/08/003/25264 to PRR) and supported by the BHF Oxbridge Centre of Regenerative Medicine (RM/13/3/30159); a Wellcome Trust Doctoral Training Fellowship 106334/Z/14/Z to TJC; a Wellcome Trust Four year PhD Studentship 215103/Z/18/Z to KK; a BHF Intermediate Basic Science Research Fellowship FS/19/31/34158 to JMV; a British Israel Research and Academic Exchange Partnership (BIRAX) Grant 13BX14PRET; a Leducq Foundation Transatlantic Network of Excellence Program 14CVD04 and MRC Unit funding to DGJ.S

    CDK1 is a synthetic lethal target for KRAS mutant tumours.

    Get PDF
    Activating KRAS mutations are found in approximately 20% of human cancers but no RAS-directed therapies are currently available. Here we describe a novel, robust, KRAS synthetic lethal interaction with the cyclin dependent kinase, CDK1. This was discovered using parallel siRNA screens in KRAS mutant and wild type colorectal isogenic tumour cells and subsequently validated in a genetically diverse panel of 26 colorectal and pancreatic tumour cell models. This established that the KRAS/CDK1 synthetic lethality applies in tumour cells with either amino acid position 12 (p.G12V, pG12D, p.G12S) or amino acid position 13 (p.G13D) KRAS mutations and can also be replicated in vivo in a xenograft model using a small molecule CDK1 inhibitor. Mechanistically, CDK1 inhibition caused a reduction in the S-phase fraction of KRAS mutant cells, an effect also characterised by modulation of Rb, a master control of the G1/S checkpoint. Taken together, these observations suggest that the KRAS/CDK1 interaction is a robust synthetic lethal effect worthy of further investigation

    Panhematopoietic RNA barcoding enables kinetic measurements of nucleate and anucleate lineages and the activation of myeloid clones following acute platelet depletion

    Get PDF
    Background: Platelets and erythrocytes constitute over 95% of all hematopoietic stem cell output. However, the clonal dynamics of HSC contribution to these lineages remains largely unexplored. Results: We use lentiviral genetic labeling of mouse hematopoietic stem cells to quantify output from all lineages, nucleate, and anucleate, simultaneously linking these with stem and progenitor cell transcriptomic phenotypes using single-cell RNA-sequencing. We observe dynamic shifts of clonal behaviors through time in same-animal peripheral blood and demonstrate that acute platelet depletion shifts the output of multipotent hematopoietic stem cells to the exclusive production of platelets. Additionally, we observe the emergence of new myeloid-biased clones, which support short- and long-term production of blood cells. Conclusions: Our approach enables kinetic studies of multi-lineage output in the peripheral blood and transcriptional heterogeneity of individual hematopoietic stem cells. Our results give a unique insight into hematopoietic stem cell reactivation upon platelet depletion and of clonal dynamics in both steady state and under stress

    Hematopoietic Stem Cell Development Is Dependent on Blood Flow

    Get PDF
    SummaryDuring vertebrate embryogenesis, hematopoietic stem cells (HSCs) arise in the aorta-gonads-mesonephros (AGM) region. We report here that blood flow is a conserved regulator of HSC formation. In zebrafish, chemical blood flow modulators regulated HSC development, and silent heart (sih) embryos, lacking a heartbeat and blood circulation, exhibited severely reduced HSCs. Flow-modifying compounds primarily affected HSC induction after the onset of heartbeat; however, nitric oxide (NO) donors regulated HSC number even when treatment occurred before the initiation of circulation, and rescued HSCs in sih mutants. Morpholino knockdown of nos1 (nnos/enos) blocked HSC development, and its requirement was shown to be cell autonomous. In the mouse, Nos3 (eNos) was expressed in HSCs in the AGM. Intrauterine Nos inhibition or embryonic Nos3 deficiency resulted in a reduction of hematopoietic clusters and transplantable murine HSCs. This work links blood flow to AGM hematopoiesis and identifies NO as a conserved downstream regulator of HSC development

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    PGE2-regulated wnt signaling and N-acetylcysteine are synergistically hepatoprotective in zebrafish acetaminophen injury

    No full text
    Acetaminophen (APAP) toxicity is the most common drug-induced cause of acute liver failure in the United States. The only available treatment, N-acetylcysteine (NAC), has a limited time window of efficacy, indicating a need for additional therapeutic options. Zebrafish have emerged as a powerful tool for drug discovery. Here, we developed a clinically relevant zebrafish model of APAP toxicity. APAP depleted glutathione stores, elevated aminotransferase levels, increased apoptosis, and caused dose-dependent hepatocyte necrosis. These outcomes were limited by NAC and conserved in zebrafish embryos. In a targeted embryonic chemical screen, prostaglandin E2 (PGE2) was identified as a potential therapeutic agent; in the adult, PGE2 similarly decreased APAP-associated toxicity. Significantly, when combined with NAC, PGE2 extended the time window for a successful intervention, synergistically reducing apoptosis, improving liver enzymes, and preventing death. Use of a wnt reporter zebrafish line and chemical genetic epistasis showed that the effects of PGE2 are mediated through the wnt signaling pathway. Zebrafish can be used as a clinically relevant toxicological model amenable to the identification of additional therapeutics and biomarkers of APAP injury; our data suggest combinatorial PGE2 and NAC treatment would be beneficial for patients with APAP-induced liver damage.Dana-Farber Cancer InstituteHarvard Digestive Disease CenterMount Desert Island Biological Laboratory (Junior Investigator Award)American Cancer SocietyHarvard Stem Cell InstituteNational Institutes of Health (U.S.)National Institute of Diabetes and Digestive and Kidney Diseases (U.S.)National Cancer Institute (U.S.) (CA26731)Massachusetts Institute of Technology. Center for Environmental Health SciencesHoward Hughes Medical Institut

    Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis

    No full text
    North TE, Goessling W, Walkley CR, et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature. 2007;447(7147):1007-1011.Haematopoietic stem cell (HSC) homeostasis is tightly controlled by growth factors, signalling molecules and transcription factors. Definitive HSCs derived during embryogenesis in the aorta–gonad–mesonephros region subsequently colonize fetal and adult haematopoietic organs1,2. To identify new modulators of HSC formation and homeostasis, a panel of biologically active compounds was screened for effects on stem cell induction in the zebrafish aorta–gonad–mesonephros region. Here, we show that chemicals that enhance prostaglandin (PG) E2 synthesis increased HSC numbers, and those that block prostaglandin synthesis decreased stem cell numbers. The cyclooxygenases responsible for PGE2 synthesis were required for HSC formation. A stable derivative of PGE2 improved kidney marrow recovery following irradiation injury in the adult zebrafish. In murine embryonic stem cell differentiation assays, PGE2 caused amplification of multipotent progenitors. Furthermore, ex vivo exposure to stabilized PGE2 enhanced spleen colony forming units at day 12 post transplant and increased the frequency of long-term repopulating HSCs present in murine bone marrow after limiting dilution competitive transplantation. The conserved role for PGE2 in the regulation of vertebrate HSC homeostasis indicates that modulation of the prostaglandin pathway may facilitate expansion of HSC number for therapeutic purposes

    Amyloidosis is associated with thicker myelin and increased oligodendrogenesis in the adult mouse brain

    No full text
    In Alzheimer's disease, amyloid plaque formation is associated with the focal death of oligodendrocytes and soluble amyloid β impairs the survival of oligodendrocytes in vitro. However, the response of oligodendrocyte progenitor cells (OPCs) to early amyloid pathology remains unclear. To explore this, we performed a histological, electrophysiological, and behavioral characterization of transgenic mice expressing a pathological form of human amyloid precursor protein (APP), containing three single point mutations associated with the development of familial Alzheimer's disease (PDGFB-APPSw.Ind, also known as J20 mice). PDGFB-APPSw.Ind transgenic mice had impaired survival from weaning, were hyperactive by 2 months of age, and developed amyloid plaques by 6 months of age, however, their spatial memory remained intact over this time course. Hippocampal OPC density was normal in P60-P180 PDGFB-APPSw.Ind transgenic mice and, by performing whole-cell patch-clamp electrophysiology, we found that their membrane properties, including their response to kainate (100 µM), were largely normal. However, by P100, the response of hippocampal OPCs to GABA was elevated in PDGFB-APPSw.Ind transgenic mice. We also found that the nodes of Ranvier were shorter, the paranodes longer, and the myelin thicker for hippocampal axons in young adult PDGFB-APPSw.Ind transgenic mice compared with wildtype littermates. Additionally, oligodendrogenesis was normal in young adulthood, but increased in the hippocampus, entorhinal cortex, and fimbria of PDGFB-APPSw.Ind transgenic mice as pathology developed. As the new oligodendrocytes were not associated with a change in total oligodendrocyte number, these cells are likely required for cell replacement
    corecore