244 research outputs found

    Concentration-QT modelling of the novel DHFR inhibitor P218 in healthy male volunteers.

    Get PDF
    AIMS: Given the increasing emergence of drug resistance in Plasmodium, new antimalarials are urgently required. P218 is an aminopyridine that inhibits dihydrofolate reductase being developed as a malaria chemoprotective drug. Assessing the effect of new compounds on cardiac intervals is key during early drug development to determine their cardiac safety. METHODS: This double-blind, randomized, placebo-controlled, parallel group study evaluated the effect of P218 on electrocardiographic parameters following oral administration of seven single-ascending doses up to 1000 mg in 56 healthy volunteers. Participants were randomized to treatment or placebo at a 3:1 ratio. P218 was administered in the fasted state with standardized lunch served 4 hours after dosing. 12-lead ECGs were recorded in triplicate at regular intervals on the test day, and at 48, 72, 120, 168, 192 and 240 hours thereafter. Blood samples for pharmacokinetic evaluations were collected at similar time points. Concentration-effect modelling was used to assess the effect of P218 and its metabolites on cardiac intervals. RESULTS: Concentration-effect analysis showed that P218 does not prolong the QTcF, J-Tpeak or TpTe interval at all doses tested. No significant changes in QRS or PR intervals were observed. Two-sided 90% confidence intervals of subinterval effects of P218 and its metabolites were consistently below the regulatory concern threshold for all doses. Study sensitivity was confirmed by significant shortening of QTcF after a meal. CONCLUSION: Oral administration of P218 up to 1000 mg does not prolong QTcF and does not significantly change QRS or PR intervals, suggesting low risk for drug-induced proarrhythmia

    Personalizing, not patronizing: the case for patient autonomy by unbiased presentation of management options in stage I testicular cancer

    Get PDF
    Testicular cancer (TC) is the most common neoplasm in males aged 15 to 40 years and approximately 65%-75% have clinical stage I (CSI) disease. Both surveillance and adjuvant chemotherapy may be applied with indistinguishable long-term survival rates. Therefore, the patient should decide based on risk factors and potential benefits and harms rather than adopting a uniform recommendation for al

    An ecological method for the sampling of nonverbal signalling behaviours of young children with profound and multiple learning disabilities (PMLD)

    Get PDF
    - Background: Profound and multiple learning disabilities (PMLD) are a complex range of disabilities that affect the general health and wellbeing of the individual and their capacity to interact and learn. - Method: We developed a new methodology to capture the nonsymbolic signalling behaviours of children with PMLD within the context of a face-to-face interaction with a caregiver to provide analysis at a micro-level of descriptive detail incorporating the use of the ELAN digital video software. - Conclusion: The signalling behaviours of participants in a natural, everyday interaction can be better understood with the use of this innovation in methodology, which is predicated on the ecology of communication. Recognition of the developmental ability of the participants is an integral factor within that ecology. The method presented establishes an advanced account of the modalities through which a child affected by PMLD is able to communicate

    Frequent Arousal from Hibernation Linked to Severity of Infection and Mortality in Bats with White-Nose Syndrome

    Get PDF
    White-nose syndrome (WNS), an emerging infectious disease that has killed over 5.5 million hibernating bats, is named for the causative agent, a white fungus (Geomyces destructans (Gd)) that invades the skin of torpid bats. During hibernation, arousals to warm (euthermic) body temperatures are normal but deplete fat stores. Temperature-sensitive dataloggers were attached to the backs of 504 free-ranging little brown bats (Myotis lucifugus) in hibernacula located throughout the northeastern USA. Dataloggers were retrieved at the end of the hibernation season and complete profiles of skin temperature data were available from 83 bats, which were categorized as: (1) unaffected, (2) WNS-affected but alive at time of datalogger removal, or (3) WNS-affected but found dead at time of datalogger removal. Histological confirmation of WNS severity (as indexed by degree of fungal infection) as well as confirmation of presence/absence of DNA from Gd by PCR was determined for 26 animals. We demonstrated that WNS-affected bats aroused to euthermic body temperatures more frequently than unaffected bats, likely contributing to subsequent mortality. Within the subset of WNS-affected bats that were found dead at the time of datalogger removal, the number of arousal bouts since datalogger attachment significantly predicted date of death. Additionally, the severity of cutaneous Gd infection correlated with the number of arousal episodes from torpor during hibernation. Thus, increased frequency of arousal from torpor likely contributes to WNS-associated mortality, but the question of how Gd infection induces increased arousals remains unanswered

    Occlusion of Regulatory Sequences by Promoter Nucleosomes In Vivo

    Get PDF
    Nucleosomes are believed to inhibit DNA binding by transcription factors. Theoretical attempts to understand the significance of nucleosomes in gene expression and regulation are based upon this assumption. However, nucleosomal inhibition of transcription factor binding to DNA is not complete. Rather, access to nucleosomal DNA depends on a number of factors, including the stereochemistry of transcription factor-DNA interaction, the in vivo kinetics of thermal fluctuations in nucleosome structure, and the intracellular concentration of the transcription factor. In vitro binding studies must therefore be complemented with in vivo measurements. The inducible PHO5 promoter of yeast has played a prominent role in this discussion. It bears two binding sites for the transcriptional activator Pho4, which at the repressed promoter are positioned within a nucleosome and in the linker region between two nucleosomes, respectively. Earlier studies suggested that the nucleosomal binding site is inaccessible to Pho4 binding in the absence of chromatin remodeling. However, this notion has been challenged by several recent reports. We therefore have reanalyzed transcription factor binding to the PHO5 promoter in vivo, using ‘chromatin endogenous cleavage’ (ChEC). Our results unambiguously demonstrate that nucleosomes effectively interfere with the binding of Pho4 and other critical transcription factors to regulatory sequences of the PHO5 promoter. Our data furthermore suggest that Pho4 recruits the TATA box binding protein to the PHO5 promoter

    The SWI/SNF complex acts to constrain distribution of the centromeric histone variant Cse4

    Get PDF
    In order to gain insight into the function of the Saccharomyces cerevisiae SWI/SNF complex, we have identified DNA sequences to which it is bound genomewide. One surprising observation is that the complex is enriched at the centromeres of each chromosome. Deletion of the gene encoding the Snf2 subunit of the complex was found to cause partial redistribution of the centromeric histone variant Cse4 to sites on chromosome arms. Cultures of snf2Δ yeast were found to progress through mitosis slowly. This was dependent on the mitotic checkpoint protein Mad2. In the absence of Mad2, defects in chromosome segregation were observed. In the absence of Snf2, chromatin organisation at centromeres is less distinct. In particular, hypersensitive sites flanking the Cse4 containing nucleosomes are less pronounced. Furthermore, SWI/SNF complex was found to be especially effective in the dissociation of Cse4 containing chromatin in vitro. This suggests a role for Snf2 in the maintenance of point centromeres involving the removal of Cse4 from ectopic sites

    Orientation dependent molecular electrostatics drives efficient charge generation in homojunction organic solar cells

    Get PDF
    Organic solar cells usually utilise a heterojunction between electron-donating (D) and electron-accepting (A) materials to split excitons into charges. However, the use of D-A blends intrinsically limits the photovoltage and introduces morphological instability. Here, we demonstrate that polycrystalline films of chemically identical molecules offer a promising alternative and show that photoexcitation of α-sexithiophene (α-6T) films results in efficient charge generation. This leads to α-6T based homojunction organic solar cells with an external quantum efficiency reaching up to 44% and an open-circuit voltage of 1.61 V. Morphological, photoemission, and modelling studies show that boundaries between α-6T crystalline domains with different orientations generate an electrostatic landscape with an interfacial energy offset of 0.4 eV, which promotes the formation of hybridised exciton/charge-transfer states at the interface, dissociating efficiently into free charges. Our findings open new avenues for organic solar cell design where material energetics are tuned through molecular electrostatic engineering and mesoscale structural control
    • …
    corecore