71 research outputs found

    Structure of the thrombopoietin-MPL receptor complex is a blueprint for biasing hematopoiesis

    Get PDF
    Thrombopoietin (THPO or TPO) is an essential cytokine for hematopoietic stem cell (HSC) maintenance and megakaryocyte differentiation. Here, we report the 3.4 Ã… resolution cryoelectron microscopy structure of the extracellular TPO-TPO receptor (TpoR or MPL) signaling complex, revealing the basis for homodimeric MPL activation and providing a structural rationalization for genetic loss-of-function thrombocytopenia mutations. The structure guided the engineering of TPO variants (TPOmod) with a spectrum of signaling activities, from neutral antagonists to partial- and super-agonists. Partial agonist TPOmod decoupled JAK/STAT from ERK/AKT/CREB activation, driving a bias for megakaryopoiesis and platelet production without causing significant HSC expansion in mice and showing superior maintenance of human HSCs in vitro. These data demonstrate the functional uncoupling of the two primary roles of TPO, highlighting the potential utility of TPOmod in hematology research and clinical HSC transplantation

    Gibberellin-mediated RGA-LIKE1 degradation regulates embryo sac development in Arabidopsis

    Full text link
    [EN] Ovule development is essential for plant survival, as it allows correct embryo and seed development upon fertilization. The female gametophyte is formed in the central area of the nucellus during ovule development, in a complex developmental programme that involves key regulatory genes and the plant hormones auxins and brassinosteroids. Here we provide novel evidence of the role of gibberellins (GAs) in the control of megagametogenesis and embryo sac development, via the GA-dependent degradation of RGA-LIKE1 (RGL1) in the ovule primordia. YPet-rgl1.17 plants, which express a dominant version of RGL1, showed reduced fertility, mainly due to altered embryo sac formation that varied from partial to total ablation. YPet-rgl1.17 ovules followed normal development of the megaspore mother cell, meiosis, and formation of the functional megaspore, but YPet-rgl1.17 plants had impaired mitotic divisions of the functional megaspore. This phenotype is RGL1-specific, as it is not observed in any other dominant mutants of the DELLA proteins. Expression analysis of YPet-rgl1.17 coupled to in situ localization of bioactive GAs in ovule primordia led us to propose a mechanism of GA-mediated RGL1 degradation that allows proper embryo sac development. Taken together, our data unravel a novel specific role of GAs in the control of female gametophyte development.We wish to thank the IBMCP microscopy facility, and Ms J. Yun for technical assistance. We also thank Jennifer Nemhauser (University of Washington, USA) for the HACR sensor. Cambridge proofreading (https://proofreading.org/order/) provided proofreading and editing of this manuscript. This work was supported by grants from the Spanish Ministry for Science and Innovation-FEDER [BIO2017-83138R] to MAP-A and National Science Foundation [MCB-0923727] to JMA. MAP-A received a fellowship of the `Salvador de Madariaga' program from Spanish Ministry of Science and Innovation. We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI).Gomez, MD.; Barro-Trastoy, D.; Fuster Almunia, C.; Tornero Feliciano, P.; Alonso, JM.; Perez Amador, MA. (2020). Gibberellin-mediated RGA-LIKE1 degradation regulates embryo sac development in Arabidopsis. Journal of Experimental Botany. 71(22):7059-7072. https://doi.org/10.1093/jxb/eraa395S705970727122Bai, M.-Y., Shang, J.-X., Oh, E., Fan, M., Bai, Y., Zentella, R., … Wang, Z.-Y. (2012). Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nature Cell Biology, 14(8), 810-817. doi:10.1038/ncb2546Battaglia, R., Brambilla, V., & Colombo, L. (2008). Morphological analysis of female gametophyte development in thebel1 stk shp1 shp2mutant. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 142(3), 643-649. doi:10.1080/11263500802411098Beeckman, T., De Rycke, R., Viane, R., & Inzé, D. (2000). Histological Study of Seed Coat Development in Arabidopsis thaliana. Journal of Plant Research, 113(2), 139-148. doi:10.1007/pl00013924Bencivenga, S., Simonini, S., Benková, E., & Colombo, L. (2012). The Transcription Factors BEL1 and SPL Are Required for Cytokinin and Auxin Signaling During Ovule Development in Arabidopsis. The Plant Cell, 24(7), 2886-2897. doi:10.1105/tpc.112.100164Brumos, J., Zhao, C., Gong, Y., Soriano, D., Patel, A. P., Perez-Amador, M. A., … Alonso, J. M. (2019). An Improved Recombineering Toolset for Plants. The Plant Cell, 32(1), 100-122. doi:10.1105/tpc.19.00431Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.xCoen, O., Lu, J., Xu, W., De Vos, D., Péchoux, C., Domergue, F., … Magnani, E. (2019). Deposition of a cutin apoplastic barrier separating seed maternal and zygotic tissues. BMC Plant Biology, 19(1). doi:10.1186/s12870-019-1877-9Cucinotta, M., Di Marzo, M., Guazzotti, A., de Folter, S., Kater, M. M., & Colombo, L. (2020). Gynoecium size and ovule number are interconnected traits that impact seed yield. Journal of Experimental Botany, 71(9), 2479-2489. doi:10.1093/jxb/eraa050Davière, J.-M., & Achard, P. (2013). Gibberellin signaling in plants. Development, 140(6), 1147-1151. doi:10.1242/dev.087650Davière, J.-M., & Achard, P. (2016). A Pivotal Role of DELLAs in Regulating Multiple Hormone Signals. Molecular Plant, 9(1), 10-20. doi:10.1016/j.molp.2015.09.011Dill, A., Jung, H.-S., & Sun, T. -p. (2001). The DELLA motif is essential for gibberellin-induced degradation of RGA. Proceedings of the National Academy of Sciences, 98(24), 14162-14167. doi:10.1073/pnas.251534098Ferreira, L. G., de Alencar Dusi, D. M., Irsigler, A. S. T., Gomes, A. C. M. M., Mendes, M. A., Colombo, L., & de Campos Carneiro, V. T. (2017). GID1 expression is associated with ovule development of sexual and apomictic plants. Plant Cell Reports, 37(2), 293-306. doi:10.1007/s00299-017-2230-0Fleck, B., & Harberd, N. P. (2002). Evidence that theArabidopsisnuclear gibberellin signalling protein GAI is not destabilised by gibberellin. The Plant Journal, 32(6), 935-947. doi:10.1046/j.1365-313x.2002.01478.xGallego-Bartolome, J., Minguet, E. G., Grau-Enguix, F., Abbas, M., Locascio, A., Thomas, S. G., … Blazquez, M. A. (2012). Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proceedings of the National Academy of Sciences, 109(33), 13446-13451. doi:10.1073/pnas.1119992109Gallego-Bartolome, J., Minguet, E. G., Marin, J. A., Prat, S., Blazquez, M. A., & Alabadi, D. (2010). Transcriptional Diversification and Functional Conservation between DELLA Proteins in Arabidopsis. Molecular Biology and Evolution, 27(6), 1247-1256. doi:10.1093/molbev/msq012Gomez, M. D., Barro-Trastoy, D., Escoms, E., Saura-Sánchez, M., Sánchez, I., Briones-Moreno, A., … Perez-Amador, M. A. (2018). Gibberellins negatively modulate ovule number in plants. Development. doi:10.1242/dev.163865G�mez, M. D., Beltr�n, J.-P., & Ca�as, L. A. (2004). The pea END1 promoter drives anther-specific gene expression in different plant species. Planta, 219(6), 967-981. doi:10.1007/s00425-004-1300-zGómez, M. D., Fuster-Almunia, C., Ocaña-Cuesta, J., Alonso, J. M., & Pérez-Amador, M. A. (2019). RGL2 controls flower development, ovule number and fertility in Arabidopsis. Plant Science, 281, 82-92. doi:10.1016/j.plantsci.2019.01.014Gomez, M. D., Ventimilla, D., Sacristan, R., & Perez-Amador, M. A. (2016). Gibberellins Regulate Ovule Integument Development by Interfering with the Transcription Factor ATS. Plant Physiology, 172(4), 2403-2415. doi:10.1104/pp.16.01231Hedden, P., & Sponsel, V. (2015). A Century of Gibberellin Research. Journal of Plant Growth Regulation, 34(4), 740-760. doi:10.1007/s00344-015-9546-1Khakhar, A., Leydon, A. R., Lemmex, A. C., Klavins, E., & Nemhauser, J. L. (2018). Synthetic hormone-responsive transcription factors can monitor and re-program plant development. eLife, 7. doi:10.7554/elife.34702Koorneef, M., Elgersma, A., Hanhart, C. J., Loenen-Martinet, E. P., Rijn, L., & Zeevaart, J. A. D. (1985). A gibberellin insensitive mutant of Arabidopsis thaliana. Physiologia Plantarum, 65(1), 33-39. doi:10.1111/j.1399-3054.1985.tb02355.xKurihara, D., Mizuta, Y., Sato, Y., & Higashiyama, T. (2015). ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging. Development. doi:10.1242/dev.127613Lee, S. (2002). Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes & Development, 16(5), 646-658. doi:10.1101/gad.969002Li, Q.-F., Wang, C., Jiang, L., Li, S., Sun, S. S. M., & He, J.-X. (2012). An Interaction Between BZR1 and DELLAs Mediates Direct Signaling Crosstalk Between Brassinosteroids and Gibberellins in Arabidopsis. Science Signaling, 5(244). doi:10.1126/scisignal.2002908Lieber, D., Lora, J., Schrempp, S., Lenhard, M., & Laux, T. (2011). Arabidopsis WIH1 and WIH2 Genes Act in the Transition from Somatic to Reproductive Cell Fate. Current Biology, 21(12), 1009-1017. doi:10.1016/j.cub.2011.05.015Lora, J., Herrero, M., Tucker, M. R., & Hormaza, J. I. (2016). The transition from somatic to germline identity shows conserved and specialized features during angiosperm evolution. New Phytologist, 216(2), 495-509. doi:10.1111/nph.14330Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473-497. doi:10.1111/j.1399-3054.1962.tb08052.xPeng, J., Carol, P., Richards, D. E., King, K. E., Cowling, R. J., Murphy, G. P., & Harberd, N. P. (1997). The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses . Genes & Development, 11(23), 3194-3205. doi:10.1101/gad.11.23.3194Pinto, S. C., Mendes, M. A., Coimbra, S., & Tucker, M. R. (2019). Revisiting the Female Germline and Its Expanding Toolbox. Trends in Plant Science, 24(5), 455-467. doi:10.1016/j.tplants.2019.02.003Schneitz, K., Hulskamp, M., & Pruitt, R. E. (1995). Wild-type ovule development in Arabidopsis thaliana: a light microscope study of cleared whole-mount tissue. The Plant Journal, 7(5), 731-749. doi:10.1046/j.1365-313x.1995.07050731.xErbasol Serbes, I., Palovaara, J., & Groß-Hardt, R. (2019). Development and function of the flowering plant female gametophyte. Plant Development and Evolution, 401-434. doi:10.1016/bs.ctdb.2018.11.016Sun, T. (2011). The Molecular Mechanism and Evolution of the GA–GID1–DELLA Signaling Module in Plants. Current Biology, 21(9), R338-R345. doi:10.1016/j.cub.2011.02.036Tucker, M. R., Okada, T., Hu, Y., Scholefield, A., Taylor, J. M., & Koltunow, A. M. G. (2012). Somatic small RNA pathways promote the mitotic events of megagametogenesis during female reproductive development in Arabidopsis. Development, 139(8), 1399-1404. doi:10.1242/dev.075390Ursache, R., Andersen, T. G., Marhavý, P., & Geldner, N. (2018). A protocol for combining fluorescent proteins with histological stains for diverse cell wall components. The Plant Journal, 93(2), 399-412. doi:10.1111/tpj.13784Villanueva, J. M., Broadhvest, J., Hauser, B. A., Meister, R. J., Schneitz, K., & Gasser, C. S. (1999). INNER NO OUTER regulates abaxial- adaxial patterning in Arabidopsis ovules. Genes & Development, 13(23), 3160-3169. doi:10.1101/gad.13.23.3160Wen, C.-K., & Chang, C. (2002). Arabidopsis RGL1 Encodes a Negative Regulator of Gibberellin Responses. The Plant Cell, 14(1), 87-100. doi:10.1105/tpc.010325Wu, J., Mohamed, D., Dowhanik, S., Petrella, R., Gregis, V., Li, J., … Gazzarrini, S. (2020). Spatiotemporal Restriction of FUSCA3 Expression by Class I BPCs Promotes Ovule Development and Coordinates Embryo and Endosperm Growth. The Plant Cell, 32(6), 1886-1904. doi:10.1105/tpc.19.00764Yang, W.-C., Shi, D.-Q., & Chen, Y.-H. (2010). Female Gametophyte Development in Flowering Plants. Annual Review of Plant Biology, 61(1), 89-108. doi:10.1146/annurev-arplant-042809-112203Yang, W.-C., Ye, D., Xu, J., & Sundaresan, V. (1999). The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes & Development, 13(16), 2108-2117. doi:10.1101/gad.13.16.2108Zhao, L., He, J., Cai, H., Lin, H., Li, Y., Liu, R., … Qin, Y. (2014). Comparative expression profiling reveals gene functions in female meiosis and gametophyte development in Arabidopsis. The Plant Journal, 80(4), 615-628. doi:10.1111/tpj.12657Zhou, R., Benavente, L. M., Stepanova, A. N., & Alonso, J. M. (2011). A recombineering-based gene tagging system for Arabidopsis. The Plant Journal, 66(4), 712-723. doi:10.1111/j.1365-313x.2011.04524.

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Integrated Genomic Analysis of the Ubiquitin Pathway across Cancer Types

    Get PDF
    Protein ubiquitination is a dynamic and reversibleprocess of adding single ubiquitin molecules orvarious ubiquitin chains to target proteins. Here,using multidimensional omic data of 9,125 tumorsamples across 33 cancer types from The CancerGenome Atlas, we perform comprehensive molecu-lar characterization of 929 ubiquitin-related genesand 95 deubiquitinase genes. Among them, we sys-tematically identify top somatic driver candidates,including mutatedFBXW7with cancer-type-specificpatterns and amplifiedMDM2showing a mutuallyexclusive pattern withBRAFmutations. Ubiquitinpathway genes tend to be upregulated in cancermediated by diverse mechanisms. By integratingpan-cancer multiomic data, we identify a group oftumor samples that exhibit worse prognosis. Thesesamples are consistently associated with the upre-gulation of cell-cycle and DNA repair pathways, char-acterized by mutatedTP53,MYC/TERTamplifica-tion, andAPC/PTENdeletion. Our analysishighlights the importance of the ubiquitin pathwayin cancer development and lays a foundation fordeveloping relevant therapeutic strategies

    The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma

    Get PDF

    Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation.

    Get PDF
    Cancer progression involves the gradual loss of a differentiated phenotype and acquisition of progenitor and stem-cell-like features. Here, we provide novel stemness indices for assessing the degree of oncogenic dedifferentiation. We used an innovative one-class logistic regression (OCLR) machine-learning algorithm to extract transcriptomic and epigenetic feature sets derived from non-transformed pluripotent stem cells and their differentiated progeny. Using OCLR, we were able to identify previously undiscovered biological mechanisms associated with the dedifferentiated oncogenic state. Analyses of the tumor microenvironment revealed unanticipated correlation of cancer stemness with immune checkpoint expression and infiltrating immune cells. We found that the dedifferentiated oncogenic phenotype was generally most prominent in metastatic tumors. Application of our stemness indices to single-cell data revealed patterns of intra-tumor molecular heterogeneity. Finally, the indices allowed for the identification of novel targets and possible targeted therapies aimed at tumor differentiation
    • …
    corecore