15 research outputs found

    The RNA helicase DHX34 functions as a scaffold for SMG1-mediated UPF1 phosphorylation

    Get PDF
    Nonsense-mediated decay (NMD) is a messenger RNA quality-control pathway triggered by SMG1-mediated phosphorylation of the NMD factor UPF1. In recent times, the RNA helicase DHX34 was found to promote mRNP remodelling, leading to activation of NMD. Here we demonstrate the mechanism by which DHX34 functions in concert with SMG1. DHX34 comprises two distinct structural units, a core that binds UPF1 and a protruding carboxy-terminal domain (CTD) that binds the SMG1 kinase, as shown using truncated forms of DHX34 and electron microscopy of the SMG1–DHX34 complex. Truncation of the DHX34 CTD does not affect binding to UPF1; however, it compromises DHX34 binding to SMG1 to affect UPF1 phosphorylation and hence abrogate NMD. Altogether, these data suggest the existence of a complex comprising SMG1, UPF1 and DHX34, with DHX34 functioning as a scaffold for UPF1 and SMG1. This complex promotes UPF1 phosphorylation leading to functional NMD

    Advances on the structure of the R2TP/Prefoldin-like complex

    Get PDF
    Cellular stability, assembly and activation of a growing list of macromolecular complexes require the action of HSP90 working in concert with the R2TP/Prefoldin-like (R2TP/PFDL) co-chaperone. RNA polymerase II, snoRNPs and complexes of PI3-kinase-like kinases, a family that includes the ATM, ATR, DNA-PKcs, TRAPP, SMG1 and mTOR proteins, are among the clients of the HSP90-R2TP system. Evidence links the R2TP/PFDL pathway with cancer, most likely because of the essential role in pathways commonly deregulated in cancer. R2TP forms the core of the co-cochaperone and orchestrates the recruitment of HSP90 and clients, whereas prefoldin and additional prefoldin-like proteins, including URI, associate with R2TP, but their function is still unclear. The mechanism by which R2TP/PFLD facilitates assembly and activation of such a variety of macromolecular complexes is poorly understood. Recent efforts in the structural characterization of R2TP have started to provide some mechanistic insights. We summarize recent structural findings, particularly how cryo-electron microscopy (cryo-EM) is contributing to our understanding of the architecture of the R2TP core complex. Structural differences discovered between yeast and human R2TP reveal unanticipated complexities of the metazoan R2TP complex, and opens new and interesting questions about how R2TP/PFLD works

    A novel antibody against human factor B that blocks formation of the C3bB proconvertase and inhibits complement activation in disease models

    No full text
    The alternative pathway (AP) is critical for the efficient activation of complement regardless of the trigger. It is also a major player in pathogenesis, as illustrated by the long list of diseases in which AP activation contributes to pathology. Its relevance to human disease is further emphasized by the high prevalence of pathogenic inherited defects and acquired autoantibodies disrupting components and regulators of the AP C3-convertase. Because pharmacological downmodulation of the AP emerges as a broad-spectrum treatment alternative, there is a powerful interest in developing new molecules to block formation and/or activity of the AP C3-convertase. In this paper, we describe the generation of a novel mAb targeting human factor B (FB). mAb FB48.4.2, recognizing with high affinity an evolutionary-conserved epitope in the Ba fragment of FB, very efficiently inhibited formation of the AP C3-proconvertase by blocking the interaction between FB and C3b. In vitro assays using rabbit and sheep erythrocytes demonstrated that FB28.4.2 was a potent AP inhibitor that blocked complement-mediated hemolysis in several species. Using ex vivo models of disease we demonstrated that FB28.4.2 protected paroxysmal nocturnal hemoglobinuria erythrocytes from complement-mediated hemolysis and inhibited both C3 fragment and C5b-9 deposition on ADP-activated HMEC-1 cells, an experimental model for atypical hemolytic uremic syndrome. Moreover, i.v. injection of FB28.4.2 in rats blocked complement activation in rat serum and prevented the passive induction of experimental autoimmune Myasthenia gravis. As a whole, these data demonstrate the potential value of FB28.4.2 for the treatment of disorders associated with AP complement dysregulation in man and animal models

    A Novel Antibody against Human Factor B that Blocks Formation of the C3bB Proconvertase and Inhibits Complement Activation in Disease Models

    No full text
    The alternative pathway (AP) is critical for the efficient activation of complement regardless of the trigger. It is also a major player in pathogenesis, as illustrated by the long list of diseases in which AP activation contributes to pathology. Its relevance to human disease is further emphasized by the high prevalence of pathogenic inherited defects and acquired autoantibodies disrupting components and regulators of the AP C3-convertase. Because pharmacological downmodulation of the AP emerges as a broad-spectrum treatment alternative, there is a powerful interest in developing new molecules to block formation and/or activity of the AP C3-convertase. In this paper, we describe the generation of a novel mAb targeting human factor B (FB). mAb FB48.4.2, recognizing with high affinity an evolutionary-conserved epitope in the Ba fragment of FB, very efficiently inhibited formation of the AP C3-proconvertase by blocking the interaction between FB and C3b. In vitro assays using rabbit and sheep erythrocytes demonstrated that FB28.4.2 was a potent AP inhibitor that blocked complement-mediated hemolysis in several species. Using ex vivo models of disease we demonstrated that FB28.4.2 protected paroxysmal nocturnal hemoglobinuria erythrocytes from complement-mediated hemolysis and inhibited both C3 fragment and C5b-9 deposition on ADP-activated HMEC-1 cells, an experimental model for atypical hemolytic uremic syndrome. Moreover, i.v. injection of FB28.4.2 in rats blocked complement activation in rat serum and prevented the passive induction of experimental autoimmune Myasthenia gravis. As a whole, these data demonstrate the potential value of FB28.4.2 for the treatment of disorders associated with AP complement dysregulation in man and animal models

    The ‘Complex World’ of the Hsp90 Co-chaperone R2TP

    No full text
    The Hsp90 co-chaperone R2TP consists of the AAA+ ATPases, RUVBL1 (Rvb1p in yeast) and RUVBL2 (Rvb2 in yeast), which together make up a heterohexameric ring, in complex with PIH1D1 (Pih1p in yeast) and RPAP3 (Tah1p in yeast). R2TP is involved in the activation of client proteins, such as phosphatidylinositol 3 kinase-related kinases, including mTORC1, ATM, DNA-PK, SMG and ATR/ATRIP, or in the assembly of protein complexes including those of RNA polymerase and snoRNPs, amongst others. In other cases, the role of the TP component (RPAP3-PIH1D1) of R2TP, and consequently Hsp90, is controversial. None-the-less, the extensive role of RUVBL1-RUVBL2 complex in cells, either with or without Hsp90, means that dysfunction of these AAA+ ATPases, Hsp90 or components of the complexes they assemble leads to diseases such as cancer, ciliary dyskinesia and in the case of defects in ATM to ataxia telangiectasia-like syndrome. Recent advances in determining the structure of the R2TP complex has led to an increased understanding of the assembly and function of the R2TP complex. In this review we discuss the current structural advances in determining the architecture of the R2TP complex and the advances made in understanding its active state
    corecore