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The RNA helicase DHX34 functions as a scaffold
for SMG1-mediated UPF1 phosphorylation
Roberto Melero1,*,w, Nele Hug2,*, Andrés López-Perrote1, Akio Yamashita3, Javier F. Cáceres2 & Oscar Llorca1

Nonsense-mediated decay (NMD) is a messenger RNA quality-control pathway triggered by

SMG1-mediated phosphorylation of the NMD factor UPF1. In recent times, the RNA helicase

DHX34 was found to promote mRNP remodelling, leading to activation of NMD. Here we

demonstrate the mechanism by which DHX34 functions in concert with SMG1. DHX34

comprises two distinct structural units, a core that binds UPF1 and a protruding

carboxy-terminal domain (CTD) that binds the SMG1 kinase, as shown using truncated forms

of DHX34 and electron microscopy of the SMG1–DHX34 complex. Truncation of the DHX34

CTD does not affect binding to UPF1; however, it compromises DHX34 binding to SMG1 to

affect UPF1 phosphorylation and hence abrogate NMD. Altogether, these data suggest the

existence of a complex comprising SMG1, UPF1 and DHX34, with DHX34 functioning as

a scaffold for UPF1 and SMG1. This complex promotes UPF1 phosphorylation leading to

functional NMD.

DOI: 10.1038/ncomms10585 OPEN

1 Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Cientı́ficas (Spanish National Research Council, CSIC), Ramiro de Maeztu 9,
Madrid 28040, Spain. 2 MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh,
Edinburgh EH4 2XU, UK. 3 Department of Molecular Biology, Yokohama City University School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama,
Kanagawa 236-0004, Japan. * These authors contributed equally to this work. w Present address: Centro Nacional de Biotecnologı́a (CNB), Consejo Superior
de Investigaciones Cientı́ficas (Spanish National Research Council, CSIC), Darwin 3, Madrid 28049, Spain. Correspondence and requests for materials should
be addressed to J.F.C. (email: Javier.Caceres@igmm.ed.ac.uk) or to O.L. (email: ollorca@cib.csic.es).

NATURE COMMUNICATIONS | 7:10585 | DOI: 10.1038/ncomms10585 | www.nature.com/naturecommunications 1

mailto:Javier.Caceres@igmm.ed.ac.uk
mailto:ollorca@cib.csic.es
http://www.nature.com/naturecommunications


N
onsense-mediated mRNA decay (NMD) is a
quality-control mechanism that removes mRNAs
containing premature termination codons (PTCs)1–3.

NMD also plays a more general role in regulating gene
expression by controlling decay of a significant fraction of
mRNAs in eukaryotes4. Recent evidence has revealed that NMD
is critical for stem cell differentiation5,6.

In mammals, initiation of NMD is triggered by the assembly of
large complexes containing several up-frameshift (UPF) factors,
UPF1, UPF2 and UPF3, bound to the target mRNA2,7. UPF1
is a 130-kDa RNA helicase composed of two recombinase
A (RecA)-like domains at its C terminus and an N-terminal
regulatory domain8,9. In its closed conformation, an N-terminal
cysteine–histidine-rich domain packs against two (RecA)-like
domains to inhibit the ATPase/helicase activity8. UPF1
catalytic activity is regulated by UPF2 (ref. 10), which binds the
cysteine–histidine-rich domain and induces a large conformation
change that removes the inhibition of the ATPase activity9.
In higher eukaryotes, a C-terminal domain in UPF1 contributes
to its own regulation, apparently in a UPF2- and
UPF3-independent manner11. UPF1 is a highly processive RNA
helicase and its ATPase activity is required to disassemble
messenger ribonucleoproteins undergoing NMD11,12.

Phosphorylation of UPF1 by the SMG1 kinase at several sites
in both N- and C-terminal disordered tails of UPF1 is a major
event determining the activation of mRNA degradation2,3,13,14

and phosphorylated UPF1 is one of the first cellular markers
for an NMD target15. Therefore, understanding the
molecular mechanisms that regulate SMG1-mediated UPF1
phosphorylation is essential to comprehend how the NMD
pathway discriminates between normal and aberrant translation
termination. Of note, SMG1 is not present in all eukaryotes (yeast
lacks SMG1, for instance)14.

SMG1 is a large protein (410 kDa) that belongs to the
phosphoinositol 3-kinase-related kinase (PIKK) family. The
N terminus in all PIKKs is made of a long stretch of helical
repeats, mostly HEAT (Huntington, elongation factor 3, a subunit
of PP2A and TOR1) repeats. The C terminus comprises three
main conserved regions known as a FAT (FRAP, ATM and
TRRAP) domain, followed by a catalytic domain with homology
to PI3 kinases (PIKK domain hereafter) and ending in a short
C-terminal region named FATC16. The sequence of SMG1 shows
a large insertion after the kinase domain, of unclear structure and
function17. High-resolution structural information of the
conserved region at the C terminus of the PIKK family is
provided by atomic structures of the C-terminal region of
mammalian target of rapamycin (mTOR), a member of the PIKK
family. These showed that the FAT domain consist mostly of
a-helices wrapping around the catalytic domain18. On the
other hand, a 6.6-Å resolution crystal structure of full-length
DNA-PKcs showed that the HEAT repeat regions form helical
scaffolds19. The structural organization of SMG1 has been
recently defined at 17–20 Å resolution by single-particle
electron microscopy (EM) showing that the conserved
C terminus forms a compact globular region (the ‘head’) from
which the helical N-terminal regions protrude (the ‘arm’)20,21.
A model for the architecture of SMG1 was proposed by fitting
the atomic structure of mTOR18 at the ‘head’ and a fragment of
DNA-PKcs crystal structure19 at the ‘tail’ of the EM density for
SMG1, and several domains were tentatively localized21.

The kinase activity of SMG1 is downregulated by SMG8 (991
amino acids) and SMG9 (520 amino acids)22–24. Structures (17–
20 Å resolution) of SMG1 and the SMG1–SMG8–SMG9 complex
(named SMG1C for ‘SMG1C complex’) obtained using EM have
revealed that an SMG8–SMG9 complex binds to the SMG1
N-terminal regions inducing a large conformational change20,21.

It is not entirely clear how the kinase activity is regulated by these
interactions. In this regard, it was recently shown that SMG8 and
SMG9 interact with the SMG1-specific C-terminal insertion, to
promote high-affinity binding to
UPF1 (ref. 20). Furthermore, UPF2 and UPF3 can activate
SMG1 kinase activity in vivo, although mammalian NMD events
that do not require the intervention of UPF2 and/or UPF3 have
also been described25–28. Recent EM structures of SMG1C–UPF1
complexes revealed that UPF1 binds SMG1 at the proximity
of its putative kinase domain20,21. At 17–20 Å resolution, these
structures were unable to define the exact position of SMG1
kinase domain, but nonetheless they revealed UPF1, the substrate
of the kinase, attached to the ‘head’, possibly mapping to the
vicinity of the kinase domain. The attachment of UPF1 to
SMG1C revealed substantially conformational flexibility that
could be stabilized using mild cross-linking21.

Additional trans-acting factors have been identified using a
variety of strategies, such as proteomic approaches or
genome-wide RNA interference screens29–31; however, in most
cases, their mechanism of action remain to be elucidated.
In particular, recent additions have enlarged the list of proteins
that contribute to regulate UPF1 phosphorylation and NMD,
including RuvBL1 and RuvBL2, two ATPases of the AAAþ
family32,33, and DHX34 (DEAH box protein 34), an RNA
helicase of the SF2 superfamily31,34. These proteins have been
found to interact with components of the NMD machinery and
they seem to promote molecular transitions that are important to
activate NMD.

DHX34 is an RNA helicase of the DEAH box family35,
comprising several domains commonly found in this subfamily of
ATPases. The helicase core of DEAH box proteins is formed by
two (RecA)-like domains, a winged-helix domain and a helical
bundle domain, known as the Ratchet domain36. In addition,
DEAH box proteins have an auxiliary accessory C-terminal OB
(oligonucleotide/oligosaccharide-binding fold) domain (Fig. 1a),
which can regulate conformational changes in the DEAH box
helicases36,37. DHX34 associates with several NMD factors in cell
lysates, preferentially binding to hypophosphorylated UPF1
(ref. 38). DHX34 contributes to activate UPF1 phosphorylation,
but the molecular mechanism for this remains obscure. Current
evidence suggests that DHX34 promotes changes in the pattern of
interactions between NMD factors that typically associate with
NMD activation38.

Here we reveal that DHX34 functions as a scaffold to recruit
UPF1 to SMG1. A specialized C-terminal domain in DHX34
binds to SMG1 but, importantly, UPF1- and SMG1-recruiting
sites are not mutually exclusive, thus allowing the assembly of a
tripartite complex containing SMG1, UPF1 and DHX34.
The direct binding of DHX34 to the SMG1 kinase through its
C-terminal domain promotes UPF1 phosphorylation, leading to
functional NMD.

Results
3D architecture of DHX34. Human DHX34 is a DEAH-box
RNA helicase containing several domains commonly found in
this subfamily of ATPases (Fig. 1a); however, its structure has not
yet been defined experimentally. Structure predictions using
PHYRE2 (ref. 39) revealed that the core of DHX34 highly
resembles yeast Prp43 in complex with ADP (PDB ID 3KX2)40,
another DEAH-box RNA helicase41. The three-dimensional (3D)
structure of the DHX34 core, comprising 734 residues and 64% of
the total sequence, was predicted with high confidence (residues
modelled at 100% confidence), using as template the crystal
structure for Prp43 (Fig. 1b and Supplementary Fig. 1a).
These results also showed that residues 1–71 and 957–1,143 at
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the N- and C-terminal ends of the protein (NTD, CTD from now
on, respectively) could not be predicted with a significant
confidence. In addition, some predictions suggested disorder
propensity accumulating in the C-terminal regions of DHX34
and this feature was not so noticeable in other DEAH box
helicases35 (Supplementary Fig. 1b). De novo models for NTD
and CTD scored extremely low, exhibiting the absence of any
significance in these predictions (Fig. 1b). Nonetheless, these
models were informative of the general size and shape that could
be perhaps expected for these regions at low resolution and
several models for each domain were obtained. Whereas NTD

models appeared as a small, probably compact, domain, models
for CTD showed a potentially more intricate architecture, as an
elongated shape containing different degrees of bending in each
of the models proposed.

Next, we analysed the overall shape of DHX34 at low
resolution by single-particle EM, with the help of staining agents,
as proteins this size are currently extremely difficult to study
using frozen specimens. For this purpose, transiently expressed
FLAG-tagged DHX34 was affinity purified under high stringency
conditions from HEK293T cells (Fig. 1c). Images of single
molecules were sufficiently clear to reveal that DHX34 was
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Figure 1 | Architecture of DHX34 helicase. (a) Cartoon depicting the functional domains of DHX34, showing residue numbers that define their

boundaries. Names for domains are borrowed from the structure of Prp43 (ref. 40,41) and based on the predictions obtained using PHYRE2 (ref. 39). NTD,

RecA1, RecA2, winged-helix (WH), Ratchet, OB-fold and CTD domains are shown. The RecA2 domain contains a small antiparallel b-hairpin shown in

yellow. (b) Atomic modelling of DHX34 obtained using PHYRE2 (ref. 39), including the low-confidence predictions for the NTD and CTD. (c) SDS–PAGE

(4–15%) of purified FLAG-DHX34 used for the structural analysis. One microgram of FLAG-DHX34 was loaded and stained with SimplyBlue SafeStain

(Novex). (d) Gallery of selected single molecules of DHX34 observed using EM, as well as reference-free two-dimensional (2D) averages. Scale bar, 10 nm.

One representative average has been amplified, and the Tail and Core regions indicated. (e) Four views of the 24-Å resolution EM structure of DHX34,

shown as a transparent density, where the atomic predictions have been fitted. Scale bar, 5 nm.
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structured in two regions, one compact globular region (Fig. 1d,
placed at the bottom of each molecule image; named ‘core’
hereafter) and a protrusion (Fig. 1d, placed at the top; named ‘tail’
hereafter). A significant fraction of molecule images in the
micrographs were larger, consisting of associations of single
molecules, and some appeared to represent dimeric species
(Supplementary Fig. 2). We believe these larger associations
possibly represent a tendency of the protein to aggregate in vitro,
but we cannot discard a putative functional significance of the
larger aggregates, especially for the dimers (Supplementary
Fig. 2). Nonetheless, we only found monomeric DHX34
interacting with SMG1 (see below).

The structural organization of DHX34 was further revealed
after 17,752 images of single molecules of DHX34 monomers
were classified and processed to obtain reference-free averages for
homogenous views of the molecule (Fig. 1d). These
single-molecule images were used to refine the 3D structure of
DHX34 at 25 Å resolution (Fig. 1e and Supplementary Fig. 3).
The EM structure showed that DHX34 was organized as a
globular core and a tail, and the core was interpreted as
corresponding to the helicase part of the protein, as there was a
good match between the atomic model of DHX34 and the EM
when fitted within the EM density (cross-correlation¼ 0.86)
(Fig. 1e). Consequently, the apparent protrusion from the EM
structure could only be interpreted as the remaining part of the
sequence, the CTD, and several of the atomic predictions for this
domain matched reasonably the general shape and dimensions of
the protrusion (Fig. 1e brown colour). The NTD was tentatively
placed within an available density in the EM structure for
DHX34, unoccupied after fitting the predicted atomic model
(Fig. 1e grey colour). Such region was proximal to the N-terminal

end of the fitted atomic model, suggesting some likelihood for this
assumption. Nevertheless, these fitting experiments must not be
interpreted as an atomic model of DHX34, due to the resolution
provided by these analyses, but only as a way to identify, place
and describe major structures features in the architecture of
DHX34. This strategy demonstrates that DHX34 is organized in
two district structural regions, a globular core containing the
helicase domain and the C-terminal protrusion.

Direct interaction between DHX34 and SMG1. DHX34 has
been shown to associate to complexes containing several NMD
factors, but a direct interaction has only been demonstrated for
DHX34 and UPF1 (ref. 38). We have now used purified proteins
to determine whether SMG1, DHX34 and UPF1 can interact
directly. Recombinant SMG1C was prepared by co-expressing
FLAG-HA-SBP-SMG1, Strep-HA-SMG8 and Strep-HA-SMG9,
and purified by affinity using the Streptavidin-Binding Peptide
(SBP) tag as previously described21,22 (Fig. 2a). The use of
SMG1C was justified, as this complex is more stable for structural
studies than SMG1 alone in our hands22, and there is no reason
to anticipate that SMG8–SMG9 interferes with DHX34 binding.
UPF1, lacking the disordered N- and C-terminal tails (residues
115–914) was produced as a His-tag protein as previously
described21.

FLAG-HA-SBP-SMG1C was incubated with FLAG-DHX34,
bound to Streptavidin Sepharose beads and eluted with biotin
(Fig. 2b). DHX34 and SMG1C were found in a direct complex as
revealed by their co-elution. In contrast, no DHX34 was found in
the eluted fractions when SMG1C was absent or substituted by
SBP-GFP (Fig. 2b). SMG1C-DHX34 form an abundant complex,
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Figure 2 | Interactions between SMG1C and DHX34. (a) SDS–PAGE of purified FLAG-DHX34 and FLAG-SBP-HA-SMG1C used for structural studies.

Purified proteins were resolved in a 4–15% SDS–PAGE and stained using Oriole Fluorescent Gel Stain. (b) Pull-down experiment testing the interaction of

purified FLAG-DHX34 and FLAG-SBP-HA-SMG1C. Proteins bound to Streptavidin Sepharose beads were eluted using biotin and analysed by SDS–PAGE

and western blotting against the FLAG-tag in SMG1 and DHX34. Right panel shows a control experiment demonstrating that DHX34 is not eluted when

SBP-GFP is used as bait instead of FLAG-SBP-HA-SMG1C. (c) Pull-down experiment testing the interaction of His-UPF1 with FLAG-SBP-HA-SMG1C and

FLAG-DHX34. Proteins were mixed and His-UPF1 bound to and eluted from the beads. SDS–PAGE (4–15%) where proteins were identified by western

blotting using antibodies against the FLAG and His tags.
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based on the relative ratio of the anti-FLAG detection for both
proteins (Fig. 2b). As DHX34 also interacts directly with UPF1
(ref. 38), we analysed the interaction of UPF1 with DHX34 and
SMG1C using His-UPF1 (Fig. 2c). His-tag pull-down
experiments followed by the elution of bound proteins confirmed
that UPF1 binds SMG1C and DHX34, as shown before20,21,38.

Structure of the SMG1C–DHX34 complex. The amount of
SMG1C and DHX34 that we can obtain from human cells was
largely insufficient to reconstitute the SMG1C–DHX34 complex
and purify it by gel filtration chromatography. Instead, we used
the power of single-molecule EM and image processing to discern
in silico those images corresponding to the SMG1C–DHX34
complex.

SMG1C and DHX34 were incubated together (1:1.5
SMG1C/DHX34 molar ratio) and the putative complex was
chemically fixed for its observation in the electron microscope as
described before21. Images (60,070) of individual molecules were
extracted from the micrographs, processed and classified.
An image classification strategy was designed to identify those
images from the mixture corresponding to free DHX34 and
SMG1C, and those derived from the SMG1C–DHX34 complex
(Supplementary Fig. 4). The strategy was based on our knowledge

of the images obtained for DHX34 and SMG1C alone, which
facilitated finding those where SMG1C was attached to an
additional density (Supplementary Fig. 4). A large fraction of
images resulting from the incubation of SMG1 and DHX34 were
similar to those obtained for each protein alone, but image
processing also found 13,080 molecule images, never found in
DHX34 or SMG1C, where a density, corresponding to DHX34,
was bound to SMG1C (Fig. 3a). The comparison of the averages
obtained for SMG1C–DHX34 and SMG1C suggested that
DHX34 contacted the head region, where the C terminus of
SMG1 has been assigned21 (Fig. 3a).

The CTD domain recruits DHX34 to SMG1. The structure of
SMG1C and the structural model published have identified the C
terminus of SMG1, comprising the kinase domain, FAT, FATC
and FRB as a globular ‘head’ region in SMG1 (EMD-2663)21

(Fig. 3b). Images of single molecules of the SMG1C–DHX34
complex were used to refine the 3D structure of the complex at
21 Å resolution (Fig. 3b, Supplementary Fig. 5 and Supplementary
Movie 1). The density corresponding to DHX34 in
SMG1C–DHX34 was identified after alignment and subtraction
of the structure of SMG1C from SMG1C–DHX34 (Fig. 3c, i and
ii, difference map shown in red colour). The structure of DHX34
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bound to SMG1C was very similar to that of DHX34 in isolation
(Fig. 3c, iii and iv) and the structure also demonstrated that it was
the CTD that interacted with the SMG1 head domain, whereas
the helicase core remained unattached to SMG1. Interestingly,
DHX34 CTD was found to contact a region that, according to the
modelling, corresponds to the vicinities of the kinase domain21

(Fig. 3b and Supplementary Movie 1, kinase domain labelled as
PIKK and in red colour).

The relevance of the CTD domain in the recruitment of
DHX34 to SMG1 in vivo was tested using a comprehensive
collection of DHX34 deletion constructs, which comprise
deletions of individual domains (Fig. 4a). The resulting constructs
were transiently expressed as T7-tagged proteins in HEK293T
cells that were depleted of endogenous DHX34 followed by
immunoprecipitation (IP) with a T7-specific antibody and
analysis of the amount of DHX34 and SMG1 in the input and
IP fractions by western blot analysis, with anti-T7 and anti-SMG1
antibodies, respectively (Fig. 4b). The depletion of endogenous
DHX34 and the levels of expression of the short hairpin RNA
(shRNA)-resistant T7-tagged DHX34 constructs were determined
using an antibody raised against the N terminus of DHX34
(Supplementary Fig. 6). Full-length DHX34 and most of the

deleted versions of DHX34 retained their ability to bind
endogenous SMG1 but, interestingly, only the DCTD construct
showed a significant decrease in SMG1 binding. Although the
DCTD construct was expressed at lower levels than the
other deletion constructs (Fig. 4b upper panel), increasing the
expression levels of the DCTD construct did not result in an
interaction with SMG1 (Fig. 4b lanes 9 and 10 lower panel).
To further support this finding, we tested the interaction of
the DCTD mutant with SMG1C using purified proteins and SBP
pull-down experiments (Fig. 4c). We found that whereas DHX34
interacted strongly with SMG1C, truncation of the C-terminal
domain reduced binding to residual levels (Fig. 4c). Together,
these results confirm the relevance of the SMG1–DHX34
interaction described by EM and demonstrate, in combination
with the structural analysis of SMG1–DHX34, that the CTD is the
major region in DHX34 strictly required to bind directly to
SMG1.

DHX34 binds UPF1 and SMG1 in separate sites. Next, we set to
define whether the binding sites for UPF1 and SMG1 in DHX34
overlap. We had previously identified the regions in DHX34 that
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are essential for the interaction with UPF1 at the N-terminal part
of the protein, around the RecA domains38, a region we now
describe as part of the globular core of DHX34. Therefore, it is
reasonable to infer that the binding of UPF1 to DHX34 should
not interfere with the binding of DHX34 to SMG1. When we
modelled the putative overlap between UPF1 and DHX34 in the
context of SMG1C, by superimposing the 3D structures of
SMG1C–DHX34 (this work) and SMG1C–UPF1 (ref. 21), we
found that there was not a significant clash between the two
proteins, and thus an interaction of the CTD domain in
DHX34 with SMG1, together with the simultaneous interaction
of UPF1 to SMG1 and to the globular part of DHX34 is
conceptually possible (Fig. 5a). We confirmed this biochemically
by analysing a set of DHX34 deletion mutants (Fig. 5b) for their
interaction with SMG1 (Fig. 5c) and with UPF1 (Fig. 5d),
following similar strategies to those described above. The proteins
analysed in this experiment comprise the DHX34 DCTD and
DOB constructs analysed above (Fig. 4), but also included a
truncation in DHX34, affecting the integrity of the OB-fold,
DHX34 (1–809).

As described earlier, deletion of the CTD in DHX34 (DCTD)
significantly reduced its interaction with SMG1 (Fig. 5c);
however, we observed that a larger C-terminal deletion in
DHX34 (1–809), which not only misses the CTD region but also
lacks a large portion of the OB fold, binds to SMG1 significantly
more efficiently than full-length DHX34. This raised the
possibility that there could be an alternative mode of binding,
whereby DHX34 could bind to SMG1 via binding to UPF1 acting
independently of the CTD domain in cell lysates. For this, we
analysed the interaction of all these four constructs with UPF1.
We observed that all DHX34 constructs interacted with UPF1,
including the deletion construct lacking CTD domain, which was
expressed at a lower level, as shown above (Fig. 4b upper panel
and Fig. 5d), confirming that UPF1 binds to the DHX34 core
independently of the CTD domain. Of importance, we noticed
that DHX34 (1–809) interacted significantly more strongly with
UPF1 than the full-length protein (Fig. 5d), suggesting that the
OB-fold negatively regulates UPF1 binding. This was confirmed
by the stronger interaction with UPF1 displayed by DOB
construct (Fig. 5d). No pull down of any DHX34 construct was
observed if similar amounts of FLAG-GFP were immunopreci-
pitated (Supplementary Fig. 7a), ruling out the possibility that the
effects observed for the DHX34 (1–809) are caused by the
aggregation of the protein causing enhanced co-precipitation.
These results were recapitulated in vitro by co-incubation of
purified T7-DHX34 (full-length and the C-terminal deletions
DCTD and 1–809) with recombinant UPF1 proteins, either with a
purified FLAG-tagged full-length UPF1 or a truncated UPF1
construct (115–914). Again, an increased interaction of
T7–DHX34 (1–809) with UPF1 was observed (Supplementary
Fig. 7b, compare lanes 2 and 4 for full-length UPF1 and lanes 11
and 13 for the truncated UPF1 protein). In contrast, no difference
in the affinity for UPF1 was observed for the full-length
T7–DHX34 and the DCTD construct (Supplementary Fig. 7b,
compare lanes 2 and 3 for full-length UPF1 and lanes 11 and 12
for the truncated UPF1 protein).

Taking into account (i) that the CTD is the only domain
essential for recruitment to SMG1 (Fig. 4); (ii) that the integrity of
the OB-fold is disrupted in the DHX34 (1–809) construct; (iii)
that DHX34 (1–809) binds UPF1 much more tightly than wild-
type DHX34; and (iv) most importantly, that UPF1 phosphor-
ylation in the presence of DHX34 (1–809) is significantly affected
compared with full-length DHX34 (see below), we interpret
these results as an indication that DHX34 (1–809) is recruited
indirectly to SMG1 through its enhanced interaction with
UPF1.

To support this model, we tested whether SMG1C, DHX34 and
UPF1 can form a tripartite complex, in which UPF1 can
contribute to recruit DHX34 to SMG1 (Fig. 5e). For this purpose,
FLAG-SMG1, T7-DHX34 and MYC-UPF1 were co-expressed in
human cells and subjected to two sequential IPs: first, against the
FLAG-tag (for SMG1), followed by FLAG peptide elution and
then a second IP against the T7 tag (for DHX34). MYC-UPF1
was only recovered after the second IP if all three proteins, SMG1,
UPF1 and DHX34, were co-expressed (Fig. 5e, compare lane 8
with lane 7 and 9), indicating that all three proteins are part of a
multiprotein complex. To confirm that endogenous SMG1 can
also be found in complex with DHX34 and UPF1, similar
experiments were performed in cells by co-transfecting FLAG-
UPF1 (either wild-type or a C126S UPF1 mutant) with
T7–DHX34 or T7–YFP as a negative control. The C126S
mutation in UPF1 prevents its interaction with UPF2 and
consequently freezes the surveillance (SURF) complex27,42. SMG1
was only present in the second IP if FLAG-UPF1 (wild-type or
C126S) and T7-DHX34 were co-expressed (compare lane 11 with
lane 14 and 15). No SMG1 was co-purified if T7-YFP was
co-expressed with FLAG-UPF1 (wild-type or C126S) (Fig. 5f,
compare lane 12 and 13 with lane 14 and 15, respectively). Taken
together, these findings demonstrate that the regions of DHX34
involved in UPF1 and SMG1 do not overlap completely, and that
DHX34 can bind SMG1 and UPF1 simultaneously.

The CTD domain supports UPF1 phosphorylation and NMD.
Next, we explored the functional consequences of abolishing the
interaction of DHX34 and SMG1 on UPF1 phosphorylation. For
this, full-length DHX34, DCTD, DHX34 (1–809) or D279A, a
DHX34 ATPase-deficient mutant38, were co-expressed with
FLAG-UPF1 after depletion of endogenous DHX34 using
shRNA. The transcripts encoding DHX34 (full length or
mutants) were resistant to the small interfering RNA (siRNA)
because of the introduction of mutations that disrupt the
mRNA–siRNA base pair interactions without changing the
protein sequence. UPF1 was pulled down and the relative
amount of phosphorylated and non-phosphorylated UPF1 was
determined using phospho-specific antibodies, as previously
described38. DHX34 strongly enhanced UPF1 phosphorylation
(Fig. 6a,b) but, interestingly, the ratio of phosphorylated UPF1
was significantly reduced in both deletion mutants when
compared with full-length DHX34, to similar levels as observed
in cells lacking DHX34 or when using an ATPase-deficient
mutant (Fig. 6a,b). Importantly, the total amount of UPF1 that
binds to DHX34 (1–809) is substantially enhanced compared
with full-length DHX34 (Fig. 5) and, therefore, the reduced
phosphorylation of UPF1 is not due to a defect in the binding of
DHX34 to UPF1. These results suggest that the direct interaction
of DHX34 with SMG1 through the CTD is essential to stimulate
phosphorylation. In addition, it strongly suggests that DHX34 can
associate to SMG1 indirectly through UPF1, as revealed by the
DHX34 1–809 deletion mutant; however, this is insufficient to
activate UPF1 phosphorylation.

Next, we assayed for the requirement of the CTD and
consequently of binding of DHX34 to SMG1, to confer
NMD activity. For this, we used a previously described NMD
complementation assay, using a well-characterized NMD
reporter, the T-cell receptor (TCR)-b minigene harbouring a
PTC, or a wild-type reporter (lacking a PTC) as a control43.
Depleting DHX34 (70–80% reduction in mRNA levels)
(Supplementary Table 1) caused the PTC-containing TCR-b
reporter to increase by two-fold (Fig. 6c upper panel). In contrast,
the expression levels of the corresponding wild-type mRNA of the
TCR-b reporter did not change significantly (Fig. 6c lower panel).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10585 ARTICLE

NATURE COMMUNICATIONS | 7:10585 | DOI: 10.1038/ncomms10585 | www.nature.com/naturecommunications 7

http://www.nature.com/naturecommunications


In cells lacking endogenous DHX34, expressing an siRNA-
resistant version of full-length DHX34 restored NMD activity, as
seen by the reduction in the expression levels of the TCR-b
reporter (Fig. 6c left panel). By contrast, NMD activity was not
restored in cells expressing an siRNA-resistant DHX34 lacking
the CTD, where the PTC containing reporter was further
stabilized (Fig. 6c). As the DHX34 DCTD mutant was

expressed at similar levels as the full-length DHX34 (Fig. 6d),
we concluded that the CTD domain is necessary for NMD.

Discussion
UPF1 phosphorylation by the SMG1 kinase is a key event that
defines the initiation of the NMD pathway and this is regulated
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by complex mechanisms requiring the function of several NMD
factors2,7. UPF2 and UPF3 activate SMG1-mediated UPF1
phosphorylation in human cells, but additional factors have
been described recently that contribute to regulate UPF1
phosphorylation, including the RuvBL1 and RuvBL2 ATPases32,
and the RNA helicase DHX34 (refs 34,38,44). Here we have
established several key aspects of how DHX34 functions to
regulate NMD. First, we have found that the architecture of
DHX34 is organized in two distinct structural regions, a helical
core and a C-terminal region that protrudes from the core.
Second, we determined that UPF1- and SMG1-binding sites in
DHX34 are distinct and they are not mutually exclusive.
The helicase core in DHX34 interacts with UPF1, whereas its
CTD protrudes from the core and binds specifically to SMG1.
Third, the CTD is the only domain in DHX34 required to recruit

DHX34 to SMG1; however, results using the DHX34 (1–809)
deletion mutant suggest that if the core of DHX34 is strongly
bound to UPF1, DHX34 can be indirectly associated to SMG1
through UPF1. Fourth, the structure of the SMG1C–DHX34
complex reveals that CTD binds in the proximity of the SMG1
kinase domain. Fifth, SMG1, DHX34 and UPF1 can assemble in
one complex. Finally, we define that the CTD domain, and
therefore the specific interaction of DHX34 to SMG1, is necessary
to activate UPF1 phosphorylation by SMG1 and also to support a
functional NMD.

These results allow us to provide a molecular model for how
DHX34 enhances UPF1 phosphorylation (Fig. 7). We propose
that DHX34 functions as a scaffold for SMG1-mediated UPF1
phosphorylation, which brings together the kinase and its
substrate. Importantly, DHX34 (1–809) binds UPF1 and SMG1
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but it does not activate phosphorylation (Fig. 6); therefore, the
function of DHX34 cannot be merely to increase the efficiency or
the lifetime of the interaction between UPF1 and SMG1, to, in
turn, enhance UPF1 phosphorylation. The structure of the
SMG1C–UPF1 complex shows UPF1 in a well-defined
orientation, facing SMG1 kinase domain, but the conformation
of that complex was fixed with a mild cross-linking agent to help
the structural analysis21. Instead, images of the SMG1C–UPF1
complex in the absence of cross-linking suggested some flexibility
in the attachment between both proteins. The conformational
flexibility of UPF1 when attached to SMG1C was clearly revealed
by recent cryo-EM structures of the SMG1C–UPF1 complex20.
Thus, we propose that DHX34 could possibly help to position
UPF1 in the optimal orientation for phosphorylation, holding
UPF1 close to the kinase domain, but also for interaction with
other NMD factors. DHX34 promotes molecular transitions that
mark NMD initiation such as binding of UPF2 and the EJC to
UPF1 (ref. 38), whereas UPF2 and UPF3 activate the SMG1
kinase27,42. Thus, DHX34 could also contribute to facilitate the
interaction of UPF1 with UPF2. This model would explain
the requirement of the attachment of DHX34 to SMG1 through
the CTD, to enhance phosphorylation and NMD.

A role of DHX34 to promote the interaction with other NMD
factors in vivo would also rationalize why recombinant DHX34
does not stimulate UPF1 phosphorylation by SMG1 in vitro using
purified SMG1 and UPF1 (ref. 38) but it is required for the
activation of UPF1 phosphorylation in culture cells. Activation of
SMG1 kinase activity in vivo requires the interaction of SMG1
with other factors27,42 and macromolecular changes promoting
the transition from the Surveillance (SURF) to the Decay-
inducing (DECID) complex42. ATP hydrolysis by DHX34 could
possibly drive the remodelling of the NMD complexes required
for UPF1 phosphorylation. The function of an RNA helicase as
both a scaffold and an ATPase is not unique to DHX34 within the
NMD pathway, as a similar situation is also found in UPF1 (ref.
2,7). Moreover, our finding that the CTD truncated mutant
interfered with mRNA degradation more strongly than DHX34
depletion itself in NMD complementation assays could be
explained if the mutant DHX34 trapped UPF1 and/or another
NMD factors in a non-productive complex.

The proposed model strongly parallels regulation of mTOR,
another member of the PIKK family of kinases. Raptor was

shown to regulate mTOR by a collection of findings: raptor forms
a complex with mTOR; it plays an important but not obligatory
role in mTOR-mediated phosphorylation of substrates; raptor
forms a complex with both mTOR and substrates; and a deletion
mutant of raptor that does not bind to mTOR inhibits the
phosphorylation of mTOR substrates45,46. Raptor is now known
to be part of mTORC1 complex, where it contributes to bring
substrates to the active site. Our findings for DHX34 are
reminiscent of raptor, supporting a role of DHX34 as a scaffold
for UPF1 and SMG1 (Fig. 7). In addition, DHX34 would serve to
also bring together other factors required to activate SMG1 and
promote ATP-driven transitions required to promote UPF1
phosphorylation and NMD38.

Methods
Purification of proteins and protein complexes. FLAG-HA-SBP-SMG1C and
SBP-GFP were produced and purified as described before21,22. Briefly, HEK293T
cells were co-transfected with plasmids pEF_FLAG-HA-SBP-SMG1 (residues
1–3,657), pSR_Strep-HA-SMG9 (residues 2–520) and pSR_Strep-HA-SMG8
(residues 2–991) encoding SMG1, SMG8 and SMG9, respectively. SMG1C was
purified using affinity chromatography by the SBP tag. The complex was eluted by
incubation at 4 �C for 30 min with a buffer containing 2 mM biotin (Sigma-
Aldrich). FLAG-DHX34 full-length and FLAG-DHX34 DCTD proteins were
affinity purified as previously described38. HEK293T cells were grown in 10-cm
plates and transfected using Lipofectamine 2000 according to the manufacturer’s
protocol. Two days after transfection, cells were lysed in IP buffer (10 mM Tris pH
8, 150 mM NaCl, 1 mM EGTA, 1% NP-40, 0.2% Na-Deoxycholate, Complete
Protease Inhibitor (Roche), 1 mM dithiothreitol (DTT), 20 mg ml� 1 RNase A
(ThermoScientific). Following centrifugation for 10 min at 4 �C, supernatants were
incubated with anti-FLAG resin (Sigma-Aldrich) at 4 �C for 2 h. Subsequently,
beads were washed twice with IP buffer, with IP 1 M (IP buffer, supplemented with
1 M NaCl), with Buffer F (20 mM Tris-HCl pH 7.5, 1.2 mM EGTA, 250 mM
Sucrose, 150 mM NaCl, 1% Triton X-100, 0.5% NP-40), Buffer F250 (Buffer F,
supplemented with 250 mM LiCl), with Buffer D (20 mM HEPES-KOH pH 7.9,
100 mM KCl, 0.2 mM EDTA, 5% glycerol, 0.5% NP-40, 0.2% Na-Deoxycholate)
and twice with Buffer D400 (Buffer D, supplemented with 400 mM KCl). Finally,
the protein was eluted with IP Buffer supplemented with 3XFLAG-peptide at
250 mg ml� 1. His-UPF1 (residues 115–914) was produced as previously
described21. Full-length FLAG-UPF1 and T7-DHX34 (full-length or deletion
constructs) were purified as described previously38 with the addition of 20 mg ml� 1

RNase A (ThermoScientific) in the initial lysis buffer.

cDNA constructs and immunoprecipitations. The plasmids pcG T7-DHX34,
pcDNA3-3XFLAG-UPF1 and shRNA constructs have been described previously38.
The DHX34 deletion mutants were cloned by PCR amplification, using the full-
length DHX34 as a template. Primer sequences are available on request. For
shRNA transfections, cells grown in six-well plates were transfected with 4 mg of
plasmid shRNA pSuperpuro with Lipofectamine 2000 (Life Technologies),
following manufacturer’s instructions, and expanded 24 h later into selective media
containing 0.75 mg Puromycin (Sigma-Aldrich). For co-IP experiments, cells were
transfected 72 h later with 1 mg of shRNA, together with 2 mg of pcG T7-DHX34
constructs expressing either shRNA-resistant (R) wild-type, deletion constructs or
empty vector controls and selected with medium containing Puromycin. Cells were
washed 48 h later with 10 ml PBS and lysed in IP Buffer (10 mM Tris-HCl pH 8,
150 mM NaCl, 1 mM EGTA, 1% NP-40, 0.2% Na-Deoxycholate, Complete
Protease Inhibitor (Roche), Phospho STOP (Roche), 1 mM DTT and 20 mg ml� 1

RNase A). Cell lysates were cleared by centrifugation and incubated overnight with
40 ml Anti-T7 Tag Antibody agarose (69026, Novagen). The beads were washed five
times and bound proteins were eluted with protein sample buffer and analysed by
western blotting using an anti-SMG1 (ab30916, Abcam, dilution 1:1,000 or
A300–393A, Bethyl, dilution 1:1,000) and monoclonal anti-T7 (69522, Novagen,
dilution 1:5,000) antibodies. Expression levels of DHX34 constructs were
determined using antibodies against an N-terminal peptide of human DHX34 and
were described previously38 (dilution 1:1,000). An anti-tubulin antibody was used
as a loading control (T5201, TUB 2.1 clone, Sigma-Aldrich, dilution 1:5,000).
Secondary antibodies conjugated to horseradish peroxidase and ChemiGlow
detection reagent were obtained from Bio-Rad and ProteinSimple, respectively. For
FLAG-UPF1 and T7-DHX34 co-IPs, cells grown in six-well plates were transfected
with 1 mg pcIneo-FLAG-UPF1 or pCMV-FLAG-GFP and 1 mg T7–DHX34
constructs, or the corresponding empty vector plasmids. Cells were expanded 24 h
after and harvested 48 h after transfection. FLAG-UPF1 and FLAG-GFP were
detected with anti-FLAG (F1804, M2 clone, Sigma-Aldrich, dilution 1:5,000) or
anti-UPF1 (A300-036A, Bethyl, dilution 1:3,000) antibodies. For sequential co-IPs
using FLAG-SMG1, MYC-UPF1 and T7–DHX34, 10 cm plates of HEK293T cells
were transfected with 20 mg pCMV6-SMG1-MYC-FLAG (Origene), 5 mg pCMV-
myc-UPF1 and 10mg pcG T7-DHX34 or the relevant amounts of empty vector
plasmids using Lipofectamine 2000 (Life Technologies) following manufacturer’s
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Figure 7 | Molecular model for the function of DHX34 in NMD. DHX34

functions as a scaffold for UPF1 and SMG1, bringing the two proteins in the

right orientation and placing UPF1 facing the SMG1 kinase domain. The CTD

domain in DHX34 is essential for holding the SMG1-UPF1-DHX34 complex

together. DHX34 could also contribute to UPF1 phosphorylation by

facilitating the interaction of UPF1 with other NMD factors and the ATP-

driven remodelling of the NMD complexes.
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instructions, expanded 24 h later. For sequential co-IP using T7-DHX34 and
FLAG-UPF1, cells were transfected with 10 mg pcG T7-YFP or pcG T7-DHX34 and
10mg pCDNA3-3XFLAG-UPF1 (wild-type or C126S mutant), or the
corresponding empty vector plasmids. Forty-eight hours after transfections, cells
were lysed in IP buffer as described above. Anti-FLAG-IPs were then eluted in 2�
bead volumes of IP buffer supplemented with 250mg ml� 1 FLAG peptide for 4 h at
4 �C, diluted with IP buffer and subjected to anti-T7 agarose IP. SMG1 was
detected in the IP experiments using anti-SMG1 antibodies (A300–393A, Bethyl,
dilution 1:1,000). MYC-UPF1 was detected with anti-c-myc (M4439, Sigma-
Aldrich, dilution 1:5,000) and T7-tagged proteins with anti-T7 antibodies (69522,
Novagen, dilution 1:5,000). For UPF1 phosphorylation experiments, cells were
transfected 72 h later with 10 mg of shRNA, together with 20 mg of pcDNA3xFLAG-
UPF1, as well as 20mg of a plasmid expressing either shRNA-resistant (R) wild-
type, deletion constructs or empty vector controls, selected with medium
containing Puromycin and harvested for FLAG-IP 48 h later, as described above
using anti-FLAG M2 affinity gel (A2220, Sigma-Aldrich). Protein complexes were
analysed by western blotting and UPF1 phosphorylation was detected using
Phospho-(Ser/Thr) ATM/ATR Substrate Antibody (2851, Cell Signaling, dilution
1:1,000) antibodies. FLAG-UPF1 levels in the IPs were detected with anti-FLAG
(F1804, M2 clone, Sigma-Aldrich, dilution 1:5,000) antibodies. Signal were detected
with the ImageQuant LAS 4000 system (GE Healthcare) and quantified using the
ImageQuant TL Software (GE Healthcare). Uncropped scans of these experiments,
corresponding to Figs 4–6, are provided as Supplementary Information
(Supplementary Figs 8–11).

NMD assays. Human TCR-b NMD reporters have been previously described43.
Transfections of human HeLa cells were performed in six-well plates. Cells were
initially transfected with a 50-pmol siRNAs using DharamFECT I (Dharmacon).
Forty-eight hours later, cells were transfected using the Lipofectamine 2000
transfection reagent (Life Technologies) again with 50 pmol siRNAs together with a
mixture of three plasmids: one expressing the NMD reporters (0.2 mg TCR-b
reporters with or without PTC), one expressing the transfection control (0.2 mg b-
globin WT)47 and a third (0.2 mg) expressing recombinant proteins (0.2 mg for
DHX34 full-length, 0.4 mg for DHX34 DCTD) or the corresponding empty vector.
The following siRNA were used: DHX34 (D-032233-02) and the non-targeting
control (D-001206-13-20) (Dharmacon). Cells were harvested 48 h after the second
round of transfection. Total RNA was isolated using the Qiagen RNeasy kit
including DNase digestion RNA cleanup following the manufacturer’s instruction.
Complementary DNA was synthesized from 2 mg of total RNA using Transcriptor
Universal cDNA Master (Roche) according to the manufacturer’s instructions.
Quantitative reverse trascriptase–PCR (qRT–PCR) was performed using the SYBR
Green System (Roche). The expression of TCRb reporter was normalized to the
expression level of the transfection control (b-globin WT). The efficiency of the
knockdown and the expression levels of the recombinant proteins were assessed
by qRT–PCR and western blotting. For measuring the efficiency of depletion
qRT–PCR was performed using the probe system (Roche) following
normalization with three reference genes (POL2RJ, MRIP and ACTB). The
sequences of the primers used for qRT–PCR and catalogue numbers for the
Roche assays can be given on request. Uncropped scans of these experiments,
corresponding to Fig. 6, are provided as Supplementary Information
(Supplementary Fig. 11).

In vitro pull-down experiments. To test the interaction between SMG1C and
DHX34, FLAG-HA-SBP-SMG1C (17 nM, final concentration) was mixed with a
three-fold molar excess of FLAG-DHX34 in SBP-binding buffer (20 mM Tris-HCl
pH 7.5, 100 mM NaCl, 2.5 mM MgCl2, 0.5 mM DTT, 0.01% (v/v) Tween 20) in a
final volume of 20ml. The mixture was incubated while dialysing in SBP-binding
buffer for 2 h at 4 �C and subsequently incubated with Streptavidin Sepharose High
Performance Resin (GE Helthcare) for 2 h. The resin was washed three times with
SBP-binding buffer and eluted with the same buffer supplemented with 2 mM
Biotin. Interactions of UPF1 with SMG1C and DHX34 were tested by mixing
His-UPF1 (115–914) (0.4 mM, final concentration) and a two-fold molar excess of
FLAG-DHX34 and/or 15 nM FLAG-HA-SBP-SMG1C in Ni-NTA binding buffer
(40 mM Tris-HCl pH 7.5, 200 mM NaCl, 10% (v/v) glycerol, 20 mM imidazole,
1 mM MgCl2, 1 mM ZnCl2, 2 mM DTT, 0.1% (v/v) NP-40) in 30 ml. After 20 min of
incubation at 25 �C, the mixture was incubated with Ni-NTA Agarose resin
(Qiagen) for 30 min at 4 �C, washed twice with Ni-NTA-binding buffer, once with
Ni-NTA-binding buffer containing 50 mM imidazole and eluted with the same
buffer containing 500 mM imidazole. Proteins were analysed by SDS–PAGE and
Oriole Fluorescent Stain (Bio-Rad) and/or western blotting using anti-FLAG (M2
clone, Sigma-Aldrich, catalogue number F1804; dilution, 1:500) and/or anti-His
antibodies (Sigma-Aldrich, catalogue number H1029; dilution 1:5,000). Pull downs
testing the interaction between T7-DHX34 constructs and UPF1 were performed as
described previously38.

EM and image processing. Purified DHX34 and SMG1C-DHX34 complexes were
adsorbed on carbon-coated grids, stained using 1% uranyl formate and observed
using a JEOL-1230 operated at 100 kV. SMG1C-DHX34 complexes were assembled
by mixing a 1.5:1 molar ratio of DXH34 and SMG1C, with the excess of DHX34

intended to favour major occupancy of SMG1C. The SMG1C-DHX34 complex was
fixed by incubating the complex for 10 min in the presence of 0.02% glutaraldehyde
at 25 �C. Images of single molecules were obtained automatically using a TVIPS
F416 CMOS and a final magnification of 54926. Contrast transfer function was
corrected using BSOFT48. A total of 50,193 images of DHX34 and 60,070 images of
SMG1C–DHX34 at 5.68 Å per pixel were extracted from the micrographs
automatically, and then classified and averaged using methods implemented in
XMIPP49. Image classification was used to remove those images that did not
correspond to molecule images but were incorrectly selected by the unsupervised
automatic particle picking. In addition, for those images obtained after mixing
DHX34 and SMG1C, a strategy based on a combination of two-dimensional and
3D classification methods was performed to allow the discrimination of images
derived from SMG1C, DHX34 or SMG1C–DHX34 complexes (see Supplementary
Fig. 4 for details). After classification of DHX34 images, 17,751 were identified as
potential dimers and 12,316 as monomers (Supplementary Fig. 2). Only the
monomeric species were used for 3D refinement (Supplementary Fig. 3). For
SMG1C–DHX34, 13,080 images were unambiguously identified to correspond to
the complex (Supplementary Fig. 4) and only these were then used for 3D
refinement (Supplementary Fig. 5). Templates for angular refinement were
obtained using the volume generator from EMAN2 (ref. 50) using as input
unbiased reference-free averages obtained for each of the data sets and the images
were subsequently refined using XMIPP49 and EMAN50 (Supplementary Figs 3 and
5). The resolution of the structures was estimated using the Fourier shell
correlation method and a 0.5 correlation coefficient as 24.23 and 20.89 Å for
DHX34 and DHX34–SMG1C, respectively (Supplementary Figs 3 and 5). Fitting of
atomic structures into the EM maps was performed using UCSF Chimera51. The
handedness of the reconstructions was determined by comparing with the
published structure of SMG1C and the hand determined for DHX34 within the
SMG1C–DHX34 complex was then applied to DHX34. Atomic structures used for
the SMG1 model were the crystal structures of DNA-PKcs (PDB ID 3KGV)19 and
mTOR (PDB ID 4JSP)18. For DHX34, the core fitted into the EM density with
cross-correlation values above 0.90.
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