9,507 research outputs found

    Magnetic Resonance Spectroscopy discriminates the response to microglial stimulation of wild type and Alzheimer's disease models.

    Get PDF
    Microglia activation has emerged as a potential key factor in the pathogenesis of Alzheimers disease. Metabolite levels assessed by magnetic resonance spectroscopy (MRS) are used as markers of neuroinflammation in neurodegenerative diseases, but how they relate to microglial activation in health and chronic disease is incompletely understood. Using MRS, we monitored the brain metabolic response to lipopolysaccharides (LPS)-induced microglia activation in vivo in a transgenic mouse model of Alzheimers disease (APP/PS1) and healthy controls (wild-type (WT) littermates) over 4 hours. We assessed reactive gliosis by immunohistochemistry and correlated metabolic and histological measures. In WT mice, LPS induced a microglial phenotype consistent with activation, associated with a sustained increase in macromolecule and lipid levels (ML9). This effect was not seen in APP/PS1 mice, where LPS did not lead to a microglial response measured by histology, but induced a late increase in the putative inflammation marker myoinositol (mI) and metabolic changes in total creatine and taurine previously reported to be associated with amyloid load. We argue that ML9 and mI distinguish the response of WT and APP/PS1 mice to immune mediators. Lipid and macromolecule levels may represent a biomarker of activation of healthy microglia, while mI may not be a glial marker

    Alterations in Mesenteric Lymph Node T Cell Phenotype and Cytokine Secretion are Associated with Changes in Thymocyte Phenotype after LP-BM5 Retrovirus Infection

    Get PDF
    In this study, mouse MLN cells and thymocytes from advanced stages of LP-BM5 retrovirus infection were studied. A decrease in the percentage of IL-7+ cells and an increase in the percentage of IL-16+ cells in the MLN indicated that secretion of these cytokines was also altered after LP-BM5 infection. The percentage of MLN T cells expressing IL-7 receptors was significantly reduced, while the percentage of MLN T cells expressing TNFR-p75 and of B cells expressing TNFR-p55 increased. Simultaneous analysis of surface markers and cytokine secretion was done in an attempt to understand whether the deregulation of IFN-Υ secretion could be ascribed to a defined cell phenotype, concluding that all T cell subsets studied increased IFN-Υ secretion after retrovirus infection. Finally, thymocyte phenotype was further analyzed trying to correlate changes in thymocyte phenotype with MLN cell phenotype. The results indicated that the increase in single positive either CD4+CD8- or CD4- CD8+ cells was due to accumulation of both immature (CD3- ) and mature (CD3+) single positive thymocytes. Moreover, single positive mature thymocytes presented a phenotype similar to the phenotype previously seen on MLN T cells. In summary, we can conclude that LP-BM5 uses the immune system to reach the thymus where it interferes with the generation of functionally mature T cells, favoring the development of T cells with an abnormal phenotype. These new T cells are activated to secrete several cytokines that in turn will favor retrovirus replication and inhibit any attempt of the immune system to control infection

    Estimating the financing gap of SMEs

    Get PDF
    Using a novel methodology, we estimate the gap between supply and demand financing of small and medium-sized enterprise (SME) financing in several European countries. We find the largest loan gap spreads are in Poland and the Netherlands. Specifically, our results show the upper boundary of the loan gap is the lowest in Romania and the highest in the Netherlands. Moreover, the lowest lower boundary of the equity gap is in the Netherlands, while the highest lower boundary is in Romania. Overall, our results suggest that there is a significant difference between the estimated demand and supply of equity, which is on average 3% of GDP

    Validation of the CogDrisk Instrument as Predictive of Dementia in Four General Community-Dwelling Populations

    Full text link
    Background: Lack of external validation of dementia risk tools is a major limitation for generalizability and translatability of prediction scores in clinical practice and research. Objectives: We aimed to validate a new dementia prediction risk tool called CogDrisk and a version, CogDrisk-AD for predicting Alzheimer’s disease (AD) using cohort studies. Design, Setting, Participants and Measurements: Four cohort studies were identified that included majority of the dementia risk factors from the CogDrisk tool. Participants who were free of dementia at baseline were included. The predictors were component variables in the CogDrisk tool that include self-reported demographics, medical risk factors and lifestyle habits. Risk scores for Any Dementia and AD were computed and Area Under the Curve (AUC) was assessed. To examine modifiable risk factors for dementia, the CogDrisk tool was tested by excluding age and sex estimates from the model. Results: The performance of the tool varied between studies. The overall AUC and 95% CI for predicting dementia was 0.77 (0.57, 0.97) for the Swedish National study on Aging and Care in Kungsholmen, 0.76 (0.70, 0.83) for the Health and Retirement Study - Aging, Demographics and Memory Study, 0.70 (0.67,0.72) for the Cardiovascular Health Study Cognition Study, and 0.66 (0.62,0.70) for the Rush Memory and Aging Project. Conclusions: The CogDrisk and CogDrisk-AD performed well in the four studies. Overall, this tool can be used to assess individualized risk factors of dementia and AD in various population settings

    Mixtures of four organochlorines enhance human breast cancer cell proliferation.

    Get PDF
    In view of the large differences between the concentrations of estrogenic chemicals needed to elicit effects in in vitro assays and their levels in human tissues, it is hard to explain possible health risks in terms of exposure to individual compounds. Human populations, however, are exposed to mixtures of estrogenic and estrogen-like agents and it is necessary to consider the impact of combined effects. We assessed the combined effects of 1-(o-chlorophenyl)-1-(p-chlorophenyl)-2,2,2-trichloroethane (o,p'-DDT), 2,2-bis(p-chlorophenyl)-1,1-dichloroethylene (p,p'-DDE), beta-hexachlorocyclohexane (beta-HCH), and 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane (p,p'-DDT) on the induction of cell proliferation in MCF-7 cells. All four compounds are persistent organochlorines that can be found in human tissues. We performed extensive concentration-response analyses with the single agents to predict the effects of two mixtures of all four compounds with different mixture ratios. We calculated the predictions by using the pharmacologically well-founded models of concentration addition and independent action and then tested them experimentally. o,p'-DDT, p,p'-DDE, beta-HCH, and p,p'-DDT acted together to produce proliferative effects in MCF-7 cells. The combined effect of the four agents could be predicted on the basis of data about single agent concentration-response relationships. Regression analysis demonstrated that there were combination effects even when each mixture component was present at levels at or below its individual no-observed-effect-concentration. We assessed combination effects in two ways: First, evaluations in relation to the proliferative responses induced by single mixture components revealed that the combination effects were stronger than the effects of the most potent constituent. Thus, according to this method of evaluation, the combined effects may be termed synergistic. Second, comparisons with the expected effects, as predicted by concentration addition and independent action, showed excellent agreement between prediction and observation. With this approach, the combined effect of all four compounds can be termed additive

    A closer look at chaotic advection in the stratosphere: part II: statistical diagnostics

    Get PDF
    Statistical diagnostics of mixing and transport are computed for a numerical model of forced shallow-water flow on the sphere and a middle-atmosphere general circulation model. In particular, particle dispersion statistics, transport fluxes, Liapunov exponents (probability density functions and ensemble averages), and tracer concentration statistics are considered. It is shown that the behavior of the diagnostics is in accord with that of kinematic chaotic advection models so long as stochasticity is sufficiently weak. Comparisons with random-strain theory are made

    Cholecystokinin in the central nervous system of the sea lamprey Petromyzon marinus: precursor identification and neuroanatomical relationships with other neuronal signalling systems

    Get PDF
    Cholecystokinin (CCK) is a neuropeptide that modulates processes such as digestion, satiety, and anxiety. CCK-type peptides have been characterized in jawed vertebrates and invertebrates, but little is known about CCK-type signalling in the most ancient group of vertebrates, the agnathans. Here, we have cloned and sequenced a cDNA encoding a sea lamprey (Petromyzon marinus L.) CCK-type precursor (PmCCK), which contains a CCK-type octapeptide sequence (PmCCK-8) that is highly similar to gnathostome CCKs. Using mRNA in situ hybridization, the distribution of PmCCK-expressing neurons was mapped in the CNS of P. marinus. This revealed PmCCK-expressing neurons in the hypothalamus, posterior tubercle, prethalamus, nucleus of the medial longitudinal fasciculus, midbrain tegmentum, isthmus, rhombencephalic reticular formation, and the putative nucleus of the solitary tract. Some PmCCK-expressing neuronal populations were only observed in adults, revealing important differences with larvae. We generated an antiserum to PmCCK-8 to enable immunohistochemical analysis of CCK expression, which revealed that GABA or glutamate, but not serotonin, tyrosine hydroxylase or neuropeptide Y, is co-expressed in some PmCCK-8-immunoreactive (ir) neurons. Importantly, this is the first demonstration of co-localization of GABA and CCK in neurons of a non-mammalian vertebrate. We also characterized extensive cholecystokinergic fibre systems of the CNS, including innervation of habenular subnuclei. A conspicuous PmCCK-8-ir tract ascending in the lateral rhombencephalon selectively innervates a glutamatergic population in the dorsal isthmic grey. Interestingly, this tract is reminiscent of the secondary gustatory/visceral tract of teleosts. In conclusion, this study provides important new information on the evolution of the cholecystokinergic system in vertebrates.</p

    SMART Research: Toward Interdisciplinary River Science in Europe

    Get PDF
    Interdisciplinary science is rapidly advancing to address complex human-environment interactions. River science aims to provide the methods and knowledge required to sustainably manage some of the planet’s most important and vulnerable ecosystems; and there is a clear need for river managers and scientists to be trained within an interdisciplinary approach. However, despite the science community’s recognition of the importance of interdisciplinary training, there are few studies examining interdisciplinary graduate programs, especially in science and engineering. Here we assess and reflect on the contribution of a 9-year European doctoral program in river science: ‘Science for MAnagement of Rivers and their Tidal Systems’ Erasmus Mundus Joint Doctorate (SMART EMJD). The program trained a new generation of 36 early career scientists under the supervision of 34 international experts from different disciplinary and interdisciplinary research fields focusing on river systems, aiming to transcend the boundaries between disciplines and between science and management. We analyzed the three core facets of the SMART program, namely: (1) interdisciplinarity, (2) internationalism, and (3) management-oriented science. We reviewed the contents of doctoral theses and publications and synthesized the outcomes of two questionnaire surveys conducted with doctoral candidates and supervisors. A high percentage of the scientific outputs (80%) were interdisciplinary. There was evidence of active collaboration between different teams of doctoral candidates and supervisors, in terms of joint publications (5 papers out of the 69 analyzed) but this was understandably quite limited given the other demands of the program. We found evidence to contradict the perception that interdisciplinarity is a barrier to career success as employment rates were high (97%) and achieved very soon after the defense, both in academia (50%) and the private/public sector (50%) with a strong international dimension. Despite management-oriented research being a limited (9%) portion of the ensemble of theses, employment in management was higher (22%). The SMART program also increased the network of international collaborations for doctoral candidates and supervisors. Reflections on doctoral training programs like SMART contribute to debates around research training and the career opportunities of interdisciplinary scientists
    corecore