1,808 research outputs found
Cost-Effectiveness of Pain Management Strategies in Advanced Cancer
Objectives
Uncontrolled pain in advanced cancer is a common problem and has significant impact on individuals’ quality of life and use of healthcare resources. Interventions to help manage pain at the end of life are available, but there is limited economic evidence to support their wider implementation. We conducted a case study economic evaluation of two pain self-management interventions (PainCheck and Tackling Cancer Pain Toolkit [TCPT]) compared with usual care.
Methods
We generated a decision-analytic model to facilitate the evaluation. This modelled the survival of individuals at the end of life as they moved through pain severity categories. Intervention effectiveness was based on published meta-analyses results. The evaluation was conducted from the perspective of the U.K. health service provider and reported cost per quality-adjusted life-year (QALY).
Results
PainCheck and TCPT were cheaper (respective incremental costs -GBP148 [-EUR168.53] and -GBP474 [-EUR539.74]) and more effective (respective incremental QALYs of 0.010 and 0.013) than usual care. There was a 65 percent and 99.5 percent chance of cost-effectiveness for PainCheck and TCPT, respectively. Results were relatively robust to sensitivity analyses. The most important driver of cost-effectiveness was level of pain reduction (intervention effectiveness). Although cost savings were modest per patient, these were considerable when accounting for the number of potential intervention beneficiaries.
Conclusions
Educational and monitoring/feedback interventions have the potential to be cost-effective. Economic evaluations based on estimates of effectiveness from published meta-analyses and using a decision modeling approach can support commissioning decisions and implementation of pain management strategies
On Loops in Inflation II: IR Effects in Single Clock Inflation
In single clock models of inflation the coupling between modes of very
different scales does not have any significant dynamical effect during
inflation. It leads to interesting projection effects. Larger and smaller modes
change the relation between the scale a mode of interest will appear in the
post-inflationary universe and will also change the time of horizon crossing of
that mode. We argue that there are no infrared projection effects in physical
questions, that there are no effects from modes of longer wavelength than the
one of interest. These potential effects cancel when computing fluctuations as
a function of physically measurable scales. Modes on scales smaller than the
one of interest change the mapping between horizon crossing time and scale. The
correction to the mapping computed in the absence of fluctuations is enhanced
by a factor N_e, the number of e-folds of inflation between horizon crossing
and reheating. The new mapping is stochastic in nature but its variance is not
enhanced by N_e.Comment: 13 pages, 1 figure; v2: JHEP published version, added minor comments
and reference
UV friendly T-parity in the SU(6)/Sp(6) little Higgs model
Electroweak precision tests put stringent constraints on the parameter space
of little Higgs models. Tree-level exchange of TeV scale particles in a generic
little Higgs model produce higher dimensional operators that make contributions
to electroweak observables that are typically too large. To avoid this problem
a discrete symmetry dubbed T-parity can be introduced to forbid the dangerous
couplings. However, it was realized that in simple group models such as the
littlest Higgs model, the implementation of T-parity in a UV completion could
present some challenges. The situation is analogous to the one in QCD where the
pion can easily be defined as being odd under a new symmetry in the
chiral Lagrangian, but this is not a symmetry of the quark Lagrangian. In
this paper we examine the possibility of implementing a T-parity in the low
energy model that might be easier to realize in the UV. In our
model, the T-parity acts on the low energy non-linear sigma model field in way
which is different to what was originally proposed for the Littlest Higgs, and
lead to a different low energy theory. In particular, the Higgs sector of this
model is a inert two Higgs doublets model with an approximate custodial
symmetry. We examine the contributions of the various sectors of the model to
electroweak precision data, and to the dark matter abundance.Comment: 21 pages,4 figures. Clarifications added, typos corrected and
references added. Published in JHE
Author correction : a global database for metacommunity ecology, integrating species, traits, environment and space
Correction to: Scientific Data https://doi.org/10.1038/s41597-019-0344-7, published online 08 January 202
Betting is loving and bettors are predators: a conceptual metaphor approach to online sports betting advertising
The legalisation of online gambling in multiple territories has caused a growth in the exposure of consumers to online sports betting (OSB) advertising. While some efforts have been made to understand the visible structure of betting promotional messages, little is known about the latent components of OSB advertisements. The present study sought to address this issue by examining the metaphorical conceptualisation of OSB advertising. A sample of Spanish and British television OSB advertisements from 2014 to 2016 was analysed (N = 133). Following Lakoff and Johnson’s conceptual metaphor theory, four main structural metaphors that shaped how OSB advertising can be understood were identified: betting as (1) an act of love, (2) a market, (3) a sport, and (4) a natural environment. In general, these metaphors, which were found widely across 29 different betting brands, facilitated the perception of bettors as active players, with an executive role in the sport events bet upon, and greater control over bet outcomes
Author correction : a global database for metacommunity ecology, integrating species, traits, environment and space
Correction to: Scientific Data https://doi.org/10.1038/s41597-019-0344-7, published online 08 January 202
General Gauge and Anomaly Mediated Supersymmetry Breaking in Grand Unified Theories with Vector-Like Particles
In Grand Unified Theories (GUTs) from orbifold and various string
constructions the generic vector-like particles do not need to form complete
SU(5) or SO(10) representations. To realize them concretely, we present
orbifold SU(5) models, orbifold SO(10) models where the gauge symmetry can be
broken down to flipped SU(5) X U(1)_X or Pati-Salam SU(4)_C X SU(2)_L X SU(2)_R
gauge symmetries, and F-theory SU(5) models. Interestingly, these vector-like
particles can be at the TeV-scale so that the lightest CP-even Higgs boson mass
can be lifted, or play the messenger fields in the Gauge Mediated Supersymmetry
Breaking (GMSB). Considering GMSB, ultraviolet insensitive Anomaly Mediated
Supersymmetry Breaking (AMSB), and the deflected AMSB, we study the general
gaugino mass relations and their indices, which are valid from the GUT scale to
the electroweak scale at one loop, in the SU(5) models, the flipped SU(5) X
U(1)_X models, and the Pati-Salam SU(4)_C X SU(2)_L X SU(2)_R models. In the
deflected AMSB, we also define the new indices for the gaugino mass relations,
and calculate them as well. Using these gaugino mass relations and their
indices, we may probe the messenger fields at intermediate scale in the GMSB
and deflected AMSB, determine the supersymmetry breaking mediation mechanisms,
and distinguish the four-dimensional GUTs, orbifold GUTs, and F-theory GUTs.Comment: RevTex4, 45 pages, 15 tables, version to appear in JHE
- …