195 research outputs found

    Potent Virucidal Activity In Vitro of Photodynamic Therapy with Hypericum Extract as Photosensitizer and White Light against Human Coronavirus HCoV-229E

    Get PDF
    The emergent human coronavirus SARS-CoV-2 and its high infectivity rate has highlighted the strong need for new virucidal treatments. In this sense, the use of photodynamic therapy (PDT) with white light, to take advantage of the sunlight, is a potent strategy for decreasing the virulence and pathogenicity of the virus. Here, we report the virucidal effect of PDT based on Hypericum extract (HE) in combination with white light, which exhibits an inhibitory activity of the human coronavirus HCoV-229E on hepatocarcinoma Huh-7 cells. Moreover, despite continuous exposure to white light, HE has long durability, being able to maintain the prevention of viral infection. Given its potent in vitro virucidal capacity, we propose HE in combination with white light as a promising candidate to fight against SARS-CoV-2 as a virucidal compound

    Comparison of ex vivo expansion culture conditions of mesenchymal stem cells for human cell therapy

    Get PDF
    Mesenchymal stem cells (MSCs) are multipotent stem cells. Based on their properties, several clinical trials have been designed to explore their potential therapeutic effect. Fetal calf serum (FCS, commonly used for in vitro expansion) is an undesirable source of xenogeneic antigens and bears the risk of transmitting contaminations. As an alternative for FCS, platelet lysate (PL) and both autologous and allogeneic human serum have been proposed. The aim of this study is to compare the culture of bone marrow (BM)- derived MSCs in the presence of different serum supplements to determine the effect on cell growth, differentiation potential, and immunologic function

    Effects of Inhibiting CoQ10 Biosynthesis with 4-nitrobenzoate in Human Fibroblasts

    Get PDF
    Coenzyme Q10 (CoQ10) is a potent lipophilic antioxidant in cell membranes and a carrier of electrons in the mitochondrial respiratory chain. We previously characterized the effects of varying severities of CoQ10 deficiency on ROS production and mitochondrial bioenergetics in cells harboring genetic defects of CoQ10 biosynthesis. We observed a unimodal distribution of ROS production with CoQ10 deficiency: cells with <20% of CoQ10 and 50–70% of CoQ10 did not generate excess ROS while cells with 30–45% of CoQ10 showed increased ROS production and lipid peroxidation. Because our previous studies were limited to a small number of mutant cell lines with heterogeneous molecular defects, here, we treated 5 control and 2 mildly CoQ10 deficient fibroblasts with varying doses of 4-nitrobenzoate (4-NB), an analog of 4-hydroxybenzoate (4-HB) and inhibitor of 4-para-hydroxybenzoate:polyprenyl transferase (COQ2) to induce a range of CoQ10 deficiencies. Our results support the concept that the degree of CoQ10 deficiency in cells dictates the extent of ATP synthesis defects and ROS production and that 40–50% residual CoQ10 produces maximal oxidative stress and cell death

    Airway cellularity, lipid laden macrophages and microbiology of gastric juice and airways in children with reflux oesophagitis

    Get PDF
    BACKGROUND: Gastroesophageal reflux disease (GORD) can cause respiratory disease in children from recurrent aspiration of gastric contents. GORD can be defined in several ways and one of the most common method is presence of reflux oesophagitis. In children with GORD and respiratory disease, airway neutrophilia has been described. However, there are no prospective studies that have examined airway cellularity in children with GORD but without respiratory disease. The aims of the study were to compare (1) BAL cellularity and lipid laden macrophage index (LLMI) and, (2) microbiology of BAL and gastric juices of children with GORD (G+) to those without (G-). METHODS: In 150 children aged <14-years, gastric aspirates and bronchoscopic airway lavage (BAL) were obtained during elective flexible upper endoscopy. GORD was defined as presence of reflux oesophagitis on distal oesophageal biopsies. RESULTS: BAL neutrophil% in G- group (n = 63) was marginally but significantly higher than that in the G+ group (n = 77), (median of 7.5 and 5 respectively, p = 0.002). Lipid laden macrophage index (LLMI), BAL percentages of lymphocyte, eosinophil and macrophage were similar between groups. Viral studies were negative in all, bacterial cultures positive in 20.7% of BALs and in 5.3% of gastric aspirates. BAL cultures did not reflect gastric aspirate cultures in all but one child. CONCLUSION: In children without respiratory disease, GORD defined by presence of reflux oesophagitis, is not associated with BAL cellular profile or LLMI abnormality. Abnormal microbiology of the airways, when present, is not related to reflux oesophagitis and does not reflect that of gastric juices

    Not-from-concentrate pilot plant ‘Wonderful’ cultivar pomegranate juice changes: Volatiles

    Get PDF
    Pilot plant ultrafiltration was used to mimic the dominant U.S. commercial pomegranate juice extraction method (hydraulic pressing whole fruit), to deliver a not-from-concentrate (NFC) juice that was high-temperature short-time pasteurized and stored at 4 and 25 °C. Recovered were 46 compounds, of which 38 were routinely isolated and subjected to analysis of variance to assess these NFC juices. Herein, 18 of the 21 consensus pomegranate compounds were recovered. Ultrafiltration resulted in significant decreases for many compounds. Conversely, pasteurization resulted in compound increases. Highly significant decreases in 12 consensus compounds were observed during storage. Principal component analysis demonstrated clearly which compounds were tightly associated, and how storage samples behaved very similarly, independent of temperature. Based on these data and previous work we reported, this solid-phase microextraction (SPME) method delivered a robust ‘Wonderful’ volatile profile in NFC juices that is likely superior qualitatively and perhaps quantitatively to typical commercial offerings

    High-Luminosity Large Hadron Collider (HL-LHC): Technical Design Report

    Get PDF
    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 9000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its instantaneous luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total number of collisions) by a factor ten. The LHC is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require new infrastructures (underground and on surface) and over a decade to implement. The new configuration, known as High Luminosity LHC (HL-LHC), relies on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11–12 Tesla superconducting magnets, compact superconducting cavities for beam rotation with ultra-precise phase control, new technology and physical processes for beam collimation and 100 metre-long high-power superconducting links with negligible energy dissipation, all of which required several years of dedicated R&D effort on a global international level. The present document describes the technologies and components that will be used to realise the project and is intended to serve as the basis for the detailed engineering design of the HL-LHC

    Neutrophils in cancer: neutral no more

    Get PDF
    Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets

    DNA Methylomes Reveal Biological Networks Involved in Human Eye Development, Functions and Associated Disorders

    Get PDF
    This work provides a comprehensive CpG methylation landscape of the different layers of the human eye that unveils the gene networks associated with their biological functions and how these are disrupted in common visual disorders. Herein, we firstly determined the role of CpG methylation in the regulation of ocular tissue-specification and described hypermethylation of retinal transcription factors (i.e., PAX6, RAX, SIX6) in a tissue-dependent manner. Second, we have characterized the DNA methylome of visual disorders linked to internal and external environmental factors. Main conclusions allow certifying that crucial pathways related to Wnt-MAPK signaling pathways or neuroinflammation are epigenetically controlled in the fibrotic disorders involved in retinal detachment, but results also reinforced the contribution of neurovascularization (ETS1, HES5, PRDM16) in diabetic retinopathy. Finally, we had studied the methylome in the most frequent intraocular tumors in adults and children (uveal melanoma and retinoblastoma, respectively). We observed that hypermethylation of tumor suppressor genes is a frequent event in ocular tumors, but also unmethylation is associated with tumorogenesis. Interestingly, unmethylation of the proto-oncogen RAB31 was a predictor of metastasis risk in uveal melanoma. Loss of methylation of the oncogenic mir-17-92 cluster was detected in primary tissues but also in blood from patients.The research leading to these results was supported by European Research Council Advanced Grant EPINORC, RecerCaixa Foundation, Federación Española de Enfermedades Raras (FEDER), Federación Española de Enfermedades Neuromusculares (ASEM), Fundación Isabel Gemio, COST CM1406, Instituto de Salud Carlos III (PI/00816) and Health and Sciences Departments of the Catalan Government (Generalitat de Catalunya). M.E. is an Institució Catalana de Recerca i Estudis Avançats (ICREA) Research Professor. We thank the staff of the Biobank Facility at the Bellvitge Biomedical Research Institute (IDIBELL), Spanish National Cancer Research Center (CNIO), Institute of Rare Diseases Research (BioNER-ISCIII), Vall d’Hebron Research Institute (VHIR) and Banc de Sang i Teixits (BST) of the Catalan Ministry of Health. We also thank Dr. Mercedes Hurtado (Department of Ophthalmology, University and Polytechnic Hospital La Fe) and Dr. Dolores Pinazo (Department of Ophthalmology, Dr. Peset University Hospital) for obtaining samples from glaucomatous patients. We thank the patients and their families.S

    Mesenchymal stem cells expanded in vitro with human serum for the treatment of acute and chronic graft-versus-host disease: results of a phase I/II clinical trial

    Get PDF
    This trial evaluated the feasibility and efficacy of the infusion of mesenchymal stem cells expanded using human serum for the treatment of refractory acute or chronic graft-versus-host disease. Twenty-eight expansions were started. In 22, a minimum of more than 1 x 10⁶ mesenchymal stem cells/kg were obtained after a median of 26 days; this threshold was not obtained in the remaining cases. Ten patients received cells for the treatment of refractory or relapsed acute graft-versus-host disease and 8 for chronic disease. One patient treated for acute graft-versus-host disease obtained a complete response, 6 had a partial response and 3 did not respond. One of the chronic patients achieved complete remision, 3 a partial response, and 4 did not respond. The current study supports the use of this approach in less heavily treated patients for both acute and chronic graft-versus-host disease. The trial has been registered at ClinicalTrials.gov: identifier NCT00447460
    corecore