799 research outputs found

    Building C(sp(3)) Molecular Complexity on 2,2 '-Bipyridine and 1,10-Phenanthroline in Rhenium Tricarbonyl Complexes

    Get PDF
    The reactions of [Re(N-N)(CO)(3)(PMe3)]OTf (N-N=2,2 '-bipyridine, bipy; 1,10-phenanthroline, phen) compounds with tBuLi and with LiHBEt3 have been explored. Addition to the N-N chelate took place with different site-selectivity depending on both chelate and nucleophile. Thus, with tBuLi, an unprecedented addition to C5 of bipy, a regiochemistry not accessible for free bipy, was obtained, whereas coordinated phen underwent tBuLi addition to C2 and C4. Remarkably, when LiHBEt3 reacted with [Re(bipy)(CO)(3)(PMe3)]OTf, hydride addition to the 4 and 6 positions of bipy triggered an intermolecular cyclodimerization of two dearomatized pyridyl rings. In contrast, hydride addition to the phen analog resulted in partial reduction of one pyridine ring. The resulting neutral Re-I products showed a varied reactivity with HOTf and with MeOTf to yield cationic complexes. These strategies rendered access to Re-I complexes containing bipy- and phen-derived chelates with several C(sp(3)) centers

    Sawtooth waves during REM sleep after administration of haloperidol combined with total sleep deprivation in healthy young subjects

    Get PDF
    We sought to examine the possible participation of dopaminergic receptors in the phasic events that occur during rapid eye movement (REM) sleep, known as sawtooth waves (STW). These phasic phenomena of REM sleep exhibit a unique morphology and, although they represent a characteristic feature of REM sleep, little is known about the mechanisms which generate them and which are apparently different from rapid eye movements. STW behavior was studied in 10 male volunteers aged 20 to 35 years, who were submitted to polysomnographic monitoring (PSG). On the adaptation night they were submitted to the first PSG and on the second night, to the basal PSG. On the third night the volunteers received placebo or haloperidol and spent the whole night awake. On the fourth night they were submitted to the third PSG. After a 15-day rest period, the volunteers returned to the sleep laboratory and, according to a double-blind crossover randomized design, received haloperidol or placebo and spent the whole night awake, after which they were submitted to the fourth PSG. The volunteers who were given haloperidol combined with sleep deprivation exhibited an elevation of the duration and density of the STW, without significant alterations of the other REM sleep phasic phenomena such as rapid eye movement. These findings suggest that sawtooth waves must have their own generating mechanisms and that the dopaminergic receptors must exert a modulating role since REM sleep deprivation, as well as administration of neuroleptics, produces supersensitivity of dopaminergic receptors.Universidade Federal de São Paulo (UNIFESP) Escola Paulista de Medicina Departamento de PsicobiologiaUNIFESP, EPM, Depto. de PsicobiologiaSciEL

    Is atherosclerosis an autoimmune disease?

    Get PDF
    Immunologic research into pathogenic mechanisms operating in autoimmune-mediated atherosclerosis initially focused on adaptive immunity. Current interest is directed to more basic inflammatory mechanisms. Chronic inflammation (innate immunity-associated) may trigger initial events that can lead to atherosclerotic cardiovascular disease. This chronic inflammation may start early in life and be perpetuated by classic atherosclerosis risk factors. Lipid peroxidation of low-density lipoprotein seems to be a key event in the initiation and progression of atherosclerosis. Oxidized low-density lipoprotein triggers inflammatory and immunogenic events that promote endothelial dysfunction and the synthesis and secretion of pro-inflammatory cytokines, leading to an autoimmune response capable of accelerating the intracellular accumulation of lipids within atherosclerotic plaques. Oxidized low-density lipoprotein binds \u3b22-glycoprotein I to form circulating complexes found in both autoimmune and non-autoimmune atherosclerosis. It is likely that \u3b22-glycoprotein I and/or these complexes contribute to early atherogenesis by stimulating pro-inflammatory innate immunity through endogenous sensors and inflammasome/interleukin-1 pathways. We discuss the chronic inflammatory (innate) and autoimmune (adaptive) responses operating in atherosclerosis to discern the role of autoimmunity in atherosclerotic cardiovascular disease

    The Volume of the Past Light-Cone and the Paneitz Operator

    Full text link
    We study a conjecture involving the invariant volume of the past light-cone from an arbitrary observation point back to a fixed initial value surface. The conjecture is that a 4th order differential operator which occurs in the theory of conformal anomalies gives 8π8\pi when acted upon the invariant volume of the past light-cone. We show that an extended version of the conjecture is valid for an arbitrary homogeneous and isotropic geometry. First order perturbation theory about flat spacetime reveals a violation of the conjecture which, however, vanishes for any vacuum solution of the Einstein equation. These results may be significant for constructing quantum gravitational observables, for quantifying the back-reaction on spacetime expansion and for alternate gravity models which feature a timelike vector field.Comment: 22 pages, no figures, 5 tables. Version 2 substantially extended to cover nonzero spatial curvature, and with simplified derivation

    wd=1w_d=-1 in interacting quintessence model

    Full text link
    A model consisting of quintessence scalar field interacting with cold dark matter is considered. Conditions required to reach wd=1w_d=-1 are discussed. It is shown that depending on the potential considered for the quintessence, reaching the phantom divide line puts some constraints on the interaction between dark energy and dark matter. This also may determine the ratio of dark matter to dark energy density at wd=1w_d=-1.Comment: 10 pages, references updated, some notes added, minor changes applied, accepted for publication in Eur. Phys. J.

    Generation of a gene-corrected human isogenic line (UAMi006-A) from propionic acidemia patient iPSC with an homozygous mutation in the PCCB gene using CRISPR/Cas9 technology

    Get PDF
    Propionic acidemia (PA) is an inherited metabolic disease caused by mutations in the PCCA and PCCB genes. We have previously generated an induced pluripotent stem cell (iPSC) line (UAMi004-A) from a PA patient with the c.1218_1231del14ins12 (p.Gly407Argfs*14) homozygous mutation in the PCCB gene. Here, we report the generation of the isogenic control in which the mutation was genetically corrected using CRISPR/Cas9 technology. Off-target editing presence was excluded and the iPSCs had typical embryonic stem cell-like morphology and normal karyotype that expressed pluripotency markers and maintained their in vitro differentiation potential.Functional Genomics of Muscle, Nerve and Brain Disorder

    Homogenization and seismic assessment : review and recent trends

    Get PDF
    The mechanics of masonry structures has been for long underdeveloped in comparison with other fields of knowledge. Presently, non-linear analysis is a popular field in masonry research and advanced computer codes are available for researchers and practitioners. The chapter presents a discussion of masonry behaviour and clarifies how to obtain the non-linear data required by the computations. The chapter also addresses different homogenisation techniques available in the literature in the linear and rigid-plastic case, aiming at defining a catalogue and at discussing the advantages and disadvantages of the different approaches. Special attention is given to stress assumed models based either on a polynomial expansion of the micro-stress field or in the discretization of the unit cell by means of a few constant stress finite elements CST with joints reduced to interfaces. Finally, the aspects of seismic assessment are presented and case studies involving the use of macro-block analysis, static (pushover) analysis and time integration analysis are discussed.(undefined

    Adsorption of mono- and multivalent cat- and anions on DNA molecules

    Get PDF
    Adsorption of monovalent and multivalent cat- and anions on a deoxyribose nucleic acid (DNA) molecule from a salt solution is investigated by computer simulation. The ions are modelled as charged hard spheres, the DNA molecule as a point charge pattern following the double-helical phosphate strands. The geometrical shape of the DNA molecules is modelled on different levels ranging from a simple cylindrical shape to structured models which include the major and minor grooves between the phosphate strands. The densities of the ions adsorbed on the phosphate strands, in the major and in the minor grooves are calculated. First, we find that the adsorption pattern on the DNA surface depends strongly on its geometrical shape: counterions adsorb preferentially along the phosphate strands for a cylindrical model shape, but in the minor groove for a geometrically structured model. Second, we find that an addition of monovalent salt ions results in an increase of the charge density in the minor groove while the total charge density of ions adsorbed in the major groove stays unchanged. The adsorbed ion densities are highly structured along the minor groove while they are almost smeared along the major groove. Furthermore, for a fixed amount of added salt, the major groove cationic charge is independent on the counterion valency. For increasing salt concentration the major groove is neutralized while the total charge adsorbed in the minor groove is constant. DNA overcharging is detected for multivalent salt. Simulations for a larger ion radii, which mimic the effect of the ion hydration, indicate an increased adsorbtion of cations in the major groove.Comment: 34 pages with 14 figure

    Low Q^2 Jet Production at HERA and Virtual Photon Structure

    Get PDF
    The transition between photoproduction and deep-inelastic scattering is investigated in jet production at the HERA ep collider, using data collected by the H1 experiment. Measurements of the differential inclusive jet cross-sections dsigep/dEt* and dsigmep/deta*, where Et* and eta* are the transverse energy and the pseudorapidity of the jets in the virtual photon-proton centre of mass frame, are presented for 0 < Q2 < 49 GeV2 and 0.3 < y < 0.6. The interpretation of the results in terms of the structure of the virtual photon is discussed. The data are best described by QCD calculations which include a partonic structure of the virtual photon that evolves with Q2.Comment: 20 pages, 5 Figure

    Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA

    Get PDF
    An investigation of the hadronic final state in diffractive and non--diffractive deep--inelastic electron--proton scattering at HERA is presented, where diffractive data are selected experimentally by demanding a large gap in pseudo --rapidity around the proton remnant direction. The transverse energy flow in the hadronic final state is evaluated using a set of estimators which quantify topological properties. Using available Monte Carlo QCD calculations, it is demonstrated that the final state in diffractive DIS exhibits the features expected if the interaction is interpreted as the scattering of an electron off a current quark with associated effects of perturbative QCD. A model in which deep--inelastic diffraction is taken to be the exchange of a pomeron with partonic structure is found to reproduce the measurements well. Models for deep--inelastic epep scattering, in which a sizeable diffractive contribution is present because of non--perturbative effects in the production of the hadronic final state, reproduce the general tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil
    corecore