1,672 research outputs found
Heterotic-Type II duality in the hypermultiplet sector
We revisit the duality between heterotic string theory compactified on K3 x
T^2 and type IIA compactified on a Calabi-Yau threefold X in the hypermultiplet
sector. We derive an explicit map between the field variables of the respective
moduli spaces at the level of the classical effective actions. We determine the
parametrization of the K3 moduli space consistent with the Ferrara-Sabharwal
form. From the expression of the holomorphic prepotential we are led to
conjecture that both X and its mirror must be K3 fibrations in order for the
type IIA theory to have an heterotic dual. We then focus on the region of the
moduli space where the metric is expressed in terms of a prepotential on both
sides of the duality. Applying the duality we derive the heterotic
hypermultiplet metric for a gauge bundle which is reduced to 24 point-like
instantons. This result is confirmed by using the duality between the heterotic
theory on T^3 and M-theory on K3. We finally study the hyper-Kaehler metric on
the moduli space of an SU(2) bundle on K3.Comment: 27 pages; references added, typos correcte
Dynamic SU(2) Structure from Seven-branes
We obtain a family of supersymmetric solutions of type IIB supergravity with
dynamic SU(2) structure, which describe the local geometry near a stack of four
D7-branes and one O7-plane wrapping a rigid four-cycle. The deformation to a
generalized complex geometry is interpreted as a consequence of nonperturbative
effects in the seven-brane gauge theory. We formulate the problem for
seven-branes wrapping the base of an appropriate del Pezzo cone, and in the
near-stack limit in which the four-cycle is flat, we obtain an exact solution
in closed form. Our solutions serve to characterize the local geometry of
nonperturbatively-stabilized flux compactifications.Comment: 49 pages, 2 figures; v2: minor corrections, references adde
Cell arrest and cell death in mammalian preimplantation development
The causes, modes, biological role and prospective significance of cell death in preimplantation development in humans and other mammals are still poorly understood. Early bovine embryos represent a very attractive experimental model for the investigation of this fundamental and important issue.
To obtain reference data on the temporal and spatial occurrence of cell death in early bovine embryogenesis, three-dimensionally preserved embryos of different ages and stages of development up to hatched blastocysts were examined in toto by confocal laser scanning microscopy. In parallel, transcript abundance profiles for selected apoptosis-related genes were analyzed by real-time reverse transcriptase-polymerase chain reaction. Our study documents that in vitro as well as in vivo, the first four cleavage cycles are prone to a high failure rate including different types of permanent cell cycle arrest and subsequent non-apoptotic blastomere death. In vitro produced and in vivo derived blastocysts showed a significant incidence of cell death in the inner cell mass (ICM), but only in part with morphological features of apoptosis. Importantly, transcripts for CASP3, CASP9, CASP8 and FAS/FASLG were not detectable or found at very low abundances.
In vitro and in vivo, errors and failures of the first and the next three cleavage divisions frequently cause immediate embryo death or lead to aberrant subsequent development, and are the main source of developmental heterogeneity. A substantial occurrence of cell death in the ICM even in fast developing blastocysts strongly suggests a regular developmentally controlled elimination of cells, while the nature and mechanisms of ICM cell death are unclear. Morphological findings as well as transcript levels measured for important apoptosis-related genes are in conflict with the view that classical caspase-mediated apoptosis is the major cause of cell death in early bovine development
Logarithmic Corrections to Extremal Black Hole Entropy from Quantum Entropy Function
We evaluate the one loop determinant of matter multiplet fields of N=4
supergravity in the near horizon geometry of quarter BPS black holes, and use
it to calculate logarithmic corrections to the entropy of these black holes
using the quantum entropy function formalism. We show that even though
individual fields give non-vanishing logarithmic contribution to the entropy,
the net contribution from all the fields in the matter multiplet vanishes. Thus
logarithmic corrections to the entropy of quarter BPS black holes, if present,
must be independent of the number of matter multiplet fields in the theory.
This is consistent with the microscopic results. During our analysis we also
determine the complete spectrum of small fluctuations of matter multiplet
fields in the near horizon geometry.Comment: LaTeX file, 52 pages; v2: minor corrections, references adde
Discrete Information from CHL Black Holes
AdS_2/CFT_1 correspondence predicts that the logarithm of a Z_N twisted index
over states carrying a fixed set of charges grows as 1/N times the entropy of
the black hole carrying the same set of charges. In this paper we verify this
explicitly by calculating the microscopic Z_N twisted index for a class of
states in the CHL models. This demonstrates that black holes carry more
information about the microstates than just the total degeneracy.Comment: LaTeX file, 24 pages; v2: references adde
Negative discriminant states in N=4 supersymmetric string theories
Single centered BPS black hole solutions exist only when the charge carried
by the black hole has positive discriminant. On the other hand the exact dyon
spectrum in heterotic string theory compactified on T^6 is known to contain
states with negative discriminant. We show that all of these negative
discriminant states can be accounted for as two centered black holes. Thus
after the contribution to the index from the two centered black holes is
subtracted from the total microscopic index, the index for states with negative
discriminant vanishes even for finite values of charges, in agreement with the
results from the black hole side. Bound state metamorphosis -- which requires
us to identify certain apparently different two centered configurations
according to a specific set of rules -- plays a crucial role in this analysis.
We also generalize these results to a class of CHL string theories.Comment: LaTeX file, 32 pages; v2: reference added; v3: added new section 3.
Super Weyl invariance: BPS equations from heterotic worldsheets
It is well-known that the beta functions on a string worldsheet correspond to
the target space equations of motion, e.g. the Einstein equations. We show that
the BPS equations, i.e. the conditions of vanishing supersymmetry variations of
the space-time fermions, can be directly derived from the worldsheet. To this
end we consider the RNS-formulation of the heterotic string with (2,0)
supersymmetry, which describes a complex torsion target space that supports a
holomorphic vector bundle. After a detailed account of its quantization and
renormalization, we establish that the cancellation of the Weyl anomaly
combined with (2,0) finiteness implies the heterotic BPS conditions: At the one
loop level the geometry is required to be conformally balanced and the gauge
background has to satisfy the Hermitean Yang-Mills equations.Comment: 1+31 pages LaTeX, 5 figures; final version, discussion relation Weyl
invariance and (2,0) finiteness extended, typos correcte
A Twist in the Dyon Partition Function
In four dimensional string theories with N=4 and N=8 supersymmetries one can
often define twisted index in a subspace of the moduli space which captures
additional information on the partition function than the ones contained in the
usual helicity trace index. We compute several such indices in type IIB string
theory on K3 x T^2 and T^6, and find that they share many properties with the
usual helicity trace index that captures the spectrum of quarter BPS states in
N=4 supersymmetric string theories. In particular the partition function is a
modular form of a subgroup of Sp(2,Z) and the jumps across the walls of
marginal stability are controlled by the residues at the poles of the partition
function. However for large charges the logarithm of this index grows as 1/n
times the entropy of a black hole carrying the same charges where n is the
order of the symmetry generator that is used to define the twisted index. We
provide a macroscopic explanation of this phenomenon using quantum entropy
function formalism. The leading saddle point corresponding to the attractor
geometry fails to contribute to the twisted index, but a Z_n orbifold of the
attractor geometry produces the desired contribution.Comment: LaTeX file, 35 pages; v2: references adde
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
- …
