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1 Introduction

Two fundamental goals in string theory are characterizing the vacua of the theory and un-
derstanding strongly-coupled four-dimensional gauge theories from a ten-dimensional view-
point. These problems intersect when the dynamics of a strongly-coupled four-dimensional
gauge theory determines the potential for compactification moduli, as in flux compactifi-
cations of type IIB string theory, where gaugino condensation on seven-branes provides an
important contribution to the potential for the Kähler moduli.

In this work we present a family of explicit local solutions that describe the region near a
stack of seven-branes wrapping a rigid four-cycle. We argue that a subclass of our solutions
encode seven-brane nonperturbative effects in ten-dimensional supergravity. We begin in
section 1.1 by motivating the study of seven-brane gaugino condensation, then explain in
section 1.2 why the corresponding solution will be a generalized complex geometry.

1.1 Gaugino condensation in string compactifications

In a compactification of type IIB string theory on a Calabi-Yau threefold, classical vacua
involving nonvanishing fluxes and localized D-brane and orientifold plane sources provide
a rich array of four-dimensional theories with N = 1 or N = 0 supersymmetry. The
Kähler moduli are typically unfixed in the classical vacuum and mediate gravitational-
strength interactions that preclude the construction of realistic models of particle physics
and cosmology. Perturbative and nonperturbative effects may be expected to give mass to
the Kähler moduli, and in certain special cases the dominant effects can be computed.

The proposals for Kähler moduli stabilization of [1–3] incorporate nonperturbative
effects arising from branes wrapping four-cycles in the compact space [4]: these can be ei-
ther Euclidean D3-branes, or a stack of (p, q) seven-branes giving rise to a four-dimensional
gauge theory that is strongly coupled in the infrared and generates a nonperturbative super-
potential. Considerable efforts have been directed at understanding the four-dimensional
effective theory incorporating the classical flux superpotential and the nonperturbative su-
perpotential arising from wrapped seven-branes, but the corresponding ten-dimensional
configuration that encodes the effects of nonperturbative dynamics on the seven-branes
remains mysterious.

Why understand the imprint of four-dimensional nonperturbative physics in ten di-
mensions, given that the four-dimensional theory itself is well-understood? One powerful
motivation comes from the utility of higher-dimensional locality in model building. For
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example, one can construct a supersymmetric visible sector on D-branes in one region of
a compactification, and later incorporate soft terms induced by supersymmetry breaking
in a distant region. A prerequisite for such an analysis is locality in the compact space,
which manifestly requires a ten-dimensional solution. Thus, understanding locality in
nonperturbatively-stabilized vacua requires a ten-dimensional solution encoding the effects
that stabilize the Kähler moduli. A second motivation is that local geometries describing
strong gauge dynamics on seven-branes could be glued into compact geometries as ‘mod-
ules’ effecting the stabilization of Kähler moduli. A third important motivation is that
gravity solutions can shed new light on the dynamics of supersymmetric gauge theories on
seven-branes via gauge-gravity duality, as we explain in section 1.2.

We are therefore led to search for explicit local solutions describing strong gauge dy-
namics on seven-branes wrapping rigid four-cycles. A natural class of local Calabi-Yau
geometries containing rigid four-cycles are complex cones over del Pezzo surfaces. The
possibilities for wrapping seven-branes on the del Pezzo base of such a cone are quite con-
strained: the total seven-brane charge must vanish (see section 2.1). A convenient choice
obeying this constraint is a stack of four D7-branes that coincide with an O7-plane: the
total seven-brane charge and tension vanish, but lower-dimensional brane charges may be
induced on the stack, e.g. by α′ corrections.1 The resulting four-dimensional gauge the-
ory is pure2 super Yang-Mills, which exhibits gaugino condensation and chiral symmetry
breaking at low energies.

We conclude that a promising setting for studying the backreaction of four-dimensional
nonperturbative effects is a Calabi-Yau cone whose base, a del Pezzo surface, is the fixed-
point locus of an orientifold action and in addition is wrapped by four D7-branes. In this
work we formulate the problem in this general setting but provide a detailed solution for
a simpler special case, in which one zooms in on the region near the seven-branes. Results
for del Pezzo cones will be provided elsewhere.

1.2 Nonperturbative effects from seven-branes and generalized complex ge-
ometry

The above configuration of seven-branes will preserve four supercharges that are embedded
in the type IIB ten-dimensional Majorana-Weyl supersymmetry generators εi as

εi = ζ+ ⊗ ηi+ + ζ− ⊗ ηi− , i = 1, 2 , (1.1)

where the conventions are those of [7]: ζ+ is a positive-chirality four-dimensional spinor
that generates four-dimensional N = 1 supersymmetry transformations, and the ηi+ are
fixed positive-chirality six-dimensional spinors, with ηi−, ζ− the Majorana conjugates of
ηi+, ζ+, respectively.

1In fact, negative D3-brane charge and tension induced on the seven-branes will contribute to the

formation of a singularity near the four-cycle.
2See section 7.1 for important comments on how the global anomaly of [5, 6] may constrain the resulting

gauge group. For simplicity of presentation we will speak of gaugino condensation in pure super Yang-Mills

throughout, while keeping in mind that the full gauge theory may be more complicated.

– 2 –



J
H
E
P
0
5
(
2
0
1
1
)
1
1
0

Taken as strictly classical sources, four D7-branes wrapping the del Pezzo fixed-point
locus of an orientifold will preserve ‘type B’ supersymmetry [7], with η1

+ = ±iη2
+. However,

a supergravity solution encoding gaugino condensation requires a different supersymmetry,
as we now argue. In a type B background (as characterized e.g. in [8]) a D3-brane experi-
ences vanishing potential, while gaugino condensation on seven-branes is known to lift the
D3-brane moduli space. Further evidence comes from [9], where it was established that in
a type B solution, gaugino condensation from D7-branes on a rigid cycle sources imaginary
anti-self-dual flux, of Hodge type (1,2), which is incompatible with the supersymmetry of
the background. In fact, a supergravity solution encoding seven-brane gaugino condensa-
tion requires that the internal spinors η1

+ and η2
+ be distinct, as argued in section 4, and a

direct analysis of the dilatino and gravitino variations becomes more involved. Mathemat-
ically, the two internal spinors define a local or dynamic SU(2) structure that can be dealt
with most efficiently in terms of generalized complex geometry [7], as originally proposed
for D7-brane gaugino condensation in [10].3

Our goal in this work is to investigate supergravity solutions with dynamic SU(2) struc-
ture that describe the gauge theory dynamics of compact seven-branes. The approach taken
here is purely ten-dimensional, and we do not assume the existence of a four-dimensional
nonperturbative superpotential. Rather, in the spirit of [11, 14], the supergravity solution
describing seven-branes wrapped on an appropriate rigid cycle should already encode the
effects of gaugino condensation.4

Let us comment on the relation between our approach and well-understood AdS/CFT
descriptions of gaugino condensation in other systems. The gravity dual of pure super
Yang-Mills is not known, and is expected to correspond to a regime of large curvature
and strong corrections to classical supergravity. However, pure super Yang-Mills can be
embedded into a branch of a large N quiver theory, or into a higher-dimensional gauge
theory, leading to well-defined supergravity solutions, albeit with extra fields that are
absent from the pure glue theory.

A celebrated example is the Klebanov-Strassler solution [14], in which an SU(N) ×
SU(N + M) quiver theory, which confines and breaks chiral symmetry in the infrared, is
dual to a conformally-Calabi-Yau solution, the warped deformed conifold. In this case
the boundary supersymmetry is of type B, facilitating embedding in well-understood flux
compactifications [8]. In contrast, there is no known supergravity solution dual to a gauge
theory with seven-branes wrapped on a rigid four-cycle. One obstacle is that taking a
four-dimensional limit by shrinking the four-cycle generically gives chiral matter and an
anomalous gauge theory.5 The anomaly has to be canceled by adding extra ingredients,
such as orientifolds, but these do not decouple from the low energy theory and complicate
both the gauge theory analysis and the supergravity solution. Furthermore, the number of
seven-branes cannot be taken to be large, so that it is difficult to obtain parametric control
of the curvatures appearing on the gravity side.

3An earlier example that displays gaugino condensation and (1, 2) three-form flux is the Polchinski-

Strassler solution [11]; the ten-dimensional analysis of [12, 13] revealed the presence of an SU(2) structure.
4See [15] for a ten-dimensional description of gaugino condensation in the heterotic string.
5Anomaly-free gauge theories from seven-branes on del Pezzo cones were constructed recently in [16].
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One might expect that our noncompact supergravity solutions should capture the
backreaction associated to the gauge theory dynamics. However, there is at present no
fully-realized gauge-gravity duality for our system: our solutions do not include a large
number of D3-branes, and the asymptotic geometry is very different from AdS5. We will
suggest that our solutions describe the behavior of the gauge theory in the deep infrared,
after most of the degrees of freedom have renormalized away. Introducing a large number
of color branes might yield a solution in which a more precise gauge/gravity dictionary can
be constructed, but we leave this question for the future.

1.3 Overview

Our main result is an explicit supersymmetric solution with dynamic (and in general,
type-changing) SU(2) structure, which describes the generalized complex geometry near
a stack of four D7-branes and one O7-plane. This solution arises as a limiting case of
configurations in which the seven-branes wrap a compact four-cycle: in the example we
provide, this cycle is the base of the Calabi-Yau cone over P2, O(−3)P2 . We construct our
solution in closed form after solving the supersymmetry conditions for an AdS4 vacuum in
the limit of vanishing cosmological constant. The form of the supersymmetry conditions
used here is SL(2,R) covariant, which is very useful in classifying the resulting solutions.

The organization of this paper is as follows. In section 2, we present some essential
geometric background for our analysis. In section 3.1, we describe a simple ansatz that
will be our primary focus. In section 3.2, we extend our considerations to the P2 cone, and
show that the ansatz of section 3.1 arises in a scaling limit that zooms in on the P2. In
section 4, we briefly review dynamic SU(2) structure, then present the full supersymmetry
conditions for compactification to AdS4 in an SL(2,R) covariant form. In section 5 we
solve these conditions, as well as the equations of motion, to obtain the most general
‘AdS-like’ supersymmetric solution to our ansatz. In section 6 we describe the regime of
validity of supergravity and discuss a few key geometric properties of our solutions. In
section 7 we present a preliminary analysis of the relation between the above solutions and
nonperturbative effects on seven-branes, and indicate a few interesting applications and
directions for future research. We conclude in section 8. The equations of motion for our
ansatz are assembled in appendix A.

2 Seven-branes and orientifolds

We will study a stack of four D7-branes atop an O7-plane, wrapping a rigid four-cycle in a
local Calabi-Yau geometry and preserving four supercharges. The specific local geometries
that we will consider are resolved Calabi-Yau cones over del Pezzo surfaces. In each case,
the del Pezzo base is a rigid shrinking divisor within the Calabi-Yau. These properties make
Calabi-Yau cones over del Pezzos the natural choice for the purpose of obtaining local gauge
theories that undergo gaugino condensation. In this work we will focus primarily on the
simplest del Pezzo surface, P2, but we begin with topological considerations that are valid
for any del Pezzo cone, and then proceed to describe the geometry of the resolved cone
over P2, O(−3)P2 .
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2.1 Orientifolds of resolved del Pezzo cones

Wrapping seven-branes over the del Pezzo surface yields a supersymmetric field theory in
four dimensions. In order to obtain a pure glue theory in which gaugino condensation can
occur, we do not add seven-branes wrapping non-compact divisors. Then, owing to the
rigidity of the del Pezzo within the Calabi-Yau, the four-dimensional field theory has no
light matter, and develops a gaugino condensate in the infrared. One can imagine altering
this situation in various ways to remove the gaugino condensate, for instance by adding D3-
branes close to the seven-branes, giving light 3-7 strings. Thus, it makes sense to consider
the supergravity background both with and without the effects of gaugino condensation.
We first consider the situation without a condensate, in which case the background contains
only D3-branes and seven-branes, and can be studied using F-theory.

The only compact divisor in these cones is the del Pezzo itself. This places a strong con-
straint on the allowed brane content consistent with tadpole cancellation, as we now show.
Since stacks of seven-branes carry an SL(2,Z) monodromy depending on their total charge,
we consider the SL(2,Z) monodromy structure of the solution. For a manifold M without
branes, the allowed monodromies are given by homomorphisms Λ : π1(M) → SL(2,Z).
Seven-branes may be thought of as topological defects in the type IIB vacuum; thus, the
seven-brane charges and monodromy structures associated with a given configuration of
branes are classified by homomorphisms Λ : π1(M ′) → SL(2,Z), where M ′ is given by M
minus the worldvolumes of the seven-branes.

A del Pezzo cone may be viewed as a real cone M over a Sasaki-Einstein manifold
which we refer to figuratively as the ‘horizon.’ Upon excising the tip, the resulting M ′

is homotopically equivalent to its horizon. Thus, the allowed seven-brane charges are
constrained by the fundamental group of the horizon. It is known that these horizons are
always simply connected up to torsion, and the only torsion groups that appear are Z3 (for
the P2 cone) and Z2 (for the P1 × P1 cone) [17]. Except in these special cases, we must
cancel the D7-brane tadpole locally.6 A well-understood way to do this is to wrap eight
D7-branes on the four-cycle and then orientifold by a Z2 involution whose fixed point locus
is the cycle itself.

It is important to distinguish between the ‘upstairs’ and ‘downstairs’ geometries of the
resulting orientifold. From the perspective of perturbative string theory, it is natural to
do computations in the upstairs geometry, in which we have eight D7-branes coinciding
with an O7-plane wrapping the base of a resolved del Pezzo cone. At energies below the
Kaluza-Klein scale the resulting gauge theory is pure glue N = 1 super Yang-Mills, where
all open string fields arise from 7-7 strings and live in the adjoint representation. Classi-
cally, the composite object carries zero seven-brane charge and tension, and generates no
deficit angle.

From the perspective of F-theory, on the other hand, it is more natural to work in the
downstairs geometry, where we identify under the involution to obtain a Z2 orbifold of the
del Pezzo cone which carries a Z2 monodromy coming from the −1 ∈ SL(2,Z). The eight

6This can be seen from the field theory perspective as well: the gauge theories corresponding to disallowed

configurations of seven-branes will be rendered inconsistent by anomalies [16].
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D7-branes of the upstairs geometry are reduced to four by this identification. In addition,
the orientifold plane appears in F-theory as a combination of two coincident (p, q) seven-
branes that separate at strong coupling [18]. Thus, in the downstairs geometry, we obtain
a stack of six (p, q) seven-branes. Each carries a deficit angle of π/6, for a total deficit
angle of π, as required to match the deficit angle of (O(−3)P2)/Z2.

Although seven-branes are often conveniently treated in F-theory, the more general
supersymmetric backgrounds that will be relevant in our analysis are not well-studied in
F-theory, and we opt to work in ten-dimensional supergravity. (In section 6.3 we will
explicitly demonstrate parametric control of the supergravity approximation.) We will
generally work in the upstairs geometry, removing modes forbidden by the involution.

2.2 The Calabi-Yau geometry of the P2 cone

We now review the well-known geometry of the Calabi-Yau cone over P2, i.e. the resolution
of the orbifold C3/Z3, where the Z3 acts by

zi → e2πi/3zi (2.1)

on the C3 coordinates zi. The Calabi-Yau metric has a U(3) = SU(3) × U(1)ψ isometry
that acts naturally on the zi, where the SU(3) subgroup acts on the P2 base in the natural
way, and we normalize the U(1)ψ such that the zi carry charge +1/3. Let us define the
U(3) invariant radial coordinate

ρ2 ≡
3∑
i=1

|zi|2 . (2.2)

Each surface of constant ρ is diffeomorphic to the horizon, S5/Z3. It is useful to think of
this space as a Hopf fibration over P2, where U(1)ψ rotates the fibers. Locally, we can define
a circle coordinate ψ with periodicity 2π, such that eiψ

(i)/3 = zi/|zi| for some arbitrarily
chosen i, and U(1)ψ rotations are equivalent to shifts in ψ.

The Z3 orbifold singularity may be resolved into a P2. Viewed from the C3/Z3 − {0}
region, the size of the resolution is visible as a normalizable perturbation to the conical
metric, as we now review. The conical Calabi-Yau metric for this space, either singular or
resolved, can be obtained by taking the Kähler potential K to depend only on ρ, so that
(cf. e.g. [19])

gmn(y)dymdyn = ∂i

(
zj̄K

′(ρ2)
)
dzidz̄j̄ = K ′(ρ2)

∑
i

dzidz̄ ī+K ′′(ρ2)
∑
i,j

z̄izj̄dz
idz̄j̄ . (2.3)

Here primes denote derivatives with respect to ρ2 and zī ≡ δījz
j . The Ricci-flatness

condition det(∂i∂̄jK) = 1 admits the solution

ρ2K ′(ρ2) = (ρ6 + ρ6
0)1/3 . (2.4)

Plugging (2.4) into (2.3) gives the metric on the resolved cone, where the origin ρ = 0 has
been blown up into a finite P2 with size controlled by ρ0.

– 6 –
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We wrap eight D7-branes on the P2 base and orientifold under the involution

σ : zi → −zi , (2.5)

combined with −1 ∈ SL(2,Z). This involution is holomorphic and reverses the holomorphic
three-form

Ω ∝ εijk dzi ∧ dzj ∧ dzk , (2.6)

as required to preserve N = 1 supersymmetry. The fixed point locus is the P2 itself. Since
the stack carries no D7-brane charge or tension in the upstairs geometry, the Calabi-Yau
metric we have just derived remains valid. However, there is a net D3-brane charge and
tension induced by α′ corrections to the D7-brane action [20]. For the del Pezzo orientifold
that we consider, the results of [21, 22] imply7 that there is an induced negative D3-brane
charge proportional to the Euler characteristic of the base. There is also a corresponding
negative tension. These charges will backreact on the warp factor and C4 in a manner
which we derive in section 5.

Since the P2 is rigid, we expect gaugino condensation to ensue at low energies. The
condensate will source imaginary anti-self-dual fluxes [9], and therefore the background will
no longer be conformally Calabi-Yau. Our approach to this problem is to search for new
supersymmetric supergravity solutions as candidates for the backreaction from nonpertur-
bative effects, in some region away from the branes where the supergravity approximation
is valid. Let us reiterate that we do not directly incorporate gaugino condensation as a
localized source (cf. [9, 10]), but instead obtain supergravity solutions that are consistent
with the possibility of such backreaction.

The holomorphic three-form (2.6) is charged under U(1)ψ, which will therefore be an
R-symmetry in the gauge theory. The R-charge of Ω is the same as that of the four-
dimensional superpotential, R(Ω) = +2, so eiβ ∈ U(1)R corresponds to e2iβ ∈ U(1)ψ. As
in the gauge theory, we expect that U(1)R is anomalous, breaking to a discrete subgroup.
Nonzero G3 flux will further break the R-symmetry since G3 must be odd under the
subgroup generated by the spatial involution, zi → −zi. We will see in section 7.1 that the
R-symmetry breaks to Z2 for our SU(2) structure solutions. We anticipate that, in regions
of parameter space where our solution provides a gravity dual to gaugino condensation,
this will be the gravity analogue of the expected spontaneous R-symmetry breaking in the
gauge theory due to the expectation value of the gaugino bilinear. We assume that the
backreacted solution does not break the remaining SU(3) symmetry.

3 Ansatz for the supergravity solution

To simplify the problem, we will first focus on a small R6 patch near the stack. The
supergravity ansatz for this limit is presented in section 3.1. In section 3.2 we present the
supergravity ansatz for the full Calabi-Yau cone over P2, and in section 3.3 we show that
the two ansätze are related by a particular near-stack limit.

7There are subtleties here involving cancellation of the global anomaly found in [5, 6]; cf. section 7.1.
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3.1 The near-stack region

We consider the R6 neighborhood of a small piece of the seven-brane stack, and approximate
the stack as flat within this region. Imposing the SU(3) symmetry group, the full geometry
can be recovered from its local form in the ρ � ρ0 limit (where ρ0 determines the size of
P2 as in (2.4)).

The first step is to define the correct ‘near-stack limit’. We focus on the decomposition
of the U(3) = SU(3)×U(1)ψ isometry group in this limit, leaving a more detailed mapping
of the supergravity fields to section 3.3. Consider the region z3 6= 0. We define coordinates

ua ≡ za/z3 , a = 1, 2 , z ≡ 1
3

(z3)3 , (3.1)

which are invariant under the Z3 orbifold action, and carry charges 0 and +1, respectively,
under the U(1)ψ. The SU(3) decomposes into SU(2)×U(1)T , where the SU(2) acts naturally
on the ua, and the U(1)T takes the form

ua → eiθua , z → e−2iθz . (3.2)

In addition, there are four generators of SU(3) that mix the ua and z. These take the
infinitesimal form

za → za + θaz3 +O(θ2) , z3 → z3 − θ̄bzb +O(θ2) , (3.3)

for complex θa, where θb̄ ≡ δb̄aθa. Thus,

ua → ua
(

1 + ubθ̄b

)
+ θa +O(θ2) , z → z

(
1− 3ubθ̄b

)
+O(θ2) . (3.4)

This is a nonlinear transformation on the coordinates, even at first order in θa. However,
if we additionally approximate that ru ≡

∑
a |ua|2 � 1, then we obtain

ua → ua + θa +O(ruθ, θ2) , z → z +O(ruθ, θ2) , (3.5)

corresponding to C2 translations on the ua. To accomplish this formally, we rescale

ua → εua , z → εz , (3.6)

and then truncate to leading order in ε.
We take (3.6) as the initial definition of the near-stack limit. (In section 6.3 we obtain a

more precise definition (6.17) in terms of the effective codimension of the stack: in the near-
stack limit, the seven-branes are real codimension two sources, while at longer distances
they appear as real codimension six sources.) Geometrically, this limit corresponds to
zooming in on a small neighborhood of a specified patch of the D7/O7 stack. As we have
shown, ‘small’ SU(3) transformations — those which map the small neighborhood to itself
— decompose locally into C2 o (SU(2) × U(1)T ) transformations; different local patches
are related by ‘large’ SU(3) transformations.
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The stack of seven-branes is located in the plane z = 0, and the involution takes
z → −z. We choose a circle coordinate ψ locally such that z = rze

iψ where rz is real. In
the near-stack limit, we find

rz ≈
1
3
ρ3 ≡ r , (3.7)

where r is an alternate radial coordinate on the P2 cone that will be useful below. Thus,
r and rz match in the near-stack limit, and except where the distinction is important, we
will denote both by r.

In our notation, the low energy effective action8 for type IIB string theory written in
Einstein frame is

S =
1

2κ2
10

∫
d10x

√
−g(10)

[
R− 1

2

(
(∇φ)2 + e−φ|H3|2 + e2φ|F1|2 + eφ|F̃3|2 +

1
2
|F̃5|2

)]
− 1

4κ2
10

∫
C4 ∧H3 ∧ F3 , (3.8)

where |Fp|2 ≡ 1
p!F

M1...MpF ?M1...Mp
, H3 = dB2, Fp = dCp−1, and

F̃3 = F3 − C0H3 , F̃5 = F5 −
1
2
C2 ∧H3 +

1
2
B2 ∧ F3 . (3.9)

We adopt a warped ansatz, with ten-dimensional metric

ds2
10 = e2A(y) hµν(x) dxµdxν + e−2A(y) gmn(y) dymdyn , (3.10)

and five-form field strength9

F̃5 = (1 + ?10) Ω4 ∧ d [α(y)] , (3.11)

where α is a scalar related to C4, hµν(x) is a maximally symmetric metric on R3,1 with
cosmological constant Λ = R(4)/4 and volume form Ω4, and gmn(y) (times the conformal
factor e−2A) gives the internal space metric. We do not assume that gmn(y) is Calabi-Yau,
or indeed even complex. The axiodilaton τ(y) = C0 + ie−φ = τ1 + i τ2 varies over the
compact space, and the three-form flux

G3 ≡
1
√
τ2

(F3 − τH3) (3.12)

points along the internal directions only.
Backreaction from the seven-branes changes the metric and sources various supergrav-

ity fields. We consider the most general ansatz compatible with the assumed symmetry
group C2 o (SU(2)×U(1)T ). The internal metric gmn must take the form

gmn(y)dymdyn = grr(r)dr2 + 2grψ(r)drdψ + gψψ(r)dψ2 + e2C(r)
∑
a

duadūa . (3.13)

8The equations of motion must be supplemented by the self-duality constraint F̃5 = ?10F̃5.
9With our sign conventions, the Hodge star associated with a D-dimensional metric g with volume form

Ω(g) is defined by ?
“

dxm1 ∧ . . . ∧ dxmp

”
= 1

(D−p)! Ω
m1...mp

(g) mp+1...mD

“
dxmp+1 ∧ . . . ∧ dxmD

”
.
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This metric is not in general Hermitian with respect to the complex structure defined by
(z, ui), but can always be made Hermitian by a suitable coordinate redefinition that alters
the complex structure,

z → λ(r)z . (3.14)

Using this, the metric may be brought to the form

ds2 = e−4B(r)
(
dr2 + r2dψ2

)
+ e2C(r)

∑
a

duadūa . (3.15)

The metric is now manifestly Hermitian, with Kähler form

J =
i

2

[
e−4B(r)dz ∧ dz̄ + e2C(r)

∑
a

dua ∧ dūa
]
. (3.16)

The metric is Kähler if and only if e2C(r) is a constant.
We now consider the general form of G3. Since there are no invariant one-forms

pointing along the base (the dua and dūa directions), invariant three-forms must have two
legs along the base and one along the fiber, and descend from invariant two-forms along
the base. These are:

ω1,1 ≡
i

2

∑
a

dua ∧ dūa , ω2,0 ≡ z du1 ∧ du2 . (3.17)

Invariant three forms are constructed by wedging 1
zdz and its conjugate into ω1,1, ω2,0, and

ω0,2 ≡ ω?2,0. Three-forms built out of ω1,1 are even under z → −z, whereas those built from
ω2,0 and ω0,2 are odd. G3 then takes the general form:

G3 =g3,0dz∧du1∧du2 +g2,1e
2iψdz̄∧du1∧du2 +g1,2e

−2iψdz∧dū1∧dū2 +g0,3dz̄∧dū1∧dū2 ,

(3.18)
where the gp,q are complex-valued functions of r only. Comparing with (3.16), we see that
J ∧G3 = 0, so that G3 is automatically primitive.

The scalars α, A, and τ can depend only on r. As previously remarked, the U(1)ψ
symmetry is broken for solutions with non-vanishing G3. In section 7.1 this breaking will be
identified with the spontaneous breaking of the exact R-symmetry on the gauge theory side.

Although one can obtain an exact supersymmetric solution to the above system by
writing down the equations of motion10 and solving them directly, it is far easier to use
the conditions for unbroken supersymmetry, which we will present in section 4 and solve
in section 5. First, however, we generalize the preceding ansatz to a Calabi-Yau cone.

3.2 Seven-branes in the P2 cone

Having proposed an ansatz for the relatively simple geometry near a seven-brane stack,
we now extend our analysis to seven-branes wrapping the P2 base of the resolved orb-
ifold C3/Z3. We will verify that the complete supergravity ansatz proposed in section 3.1
emerges upon taking the near-stack limit of our result for the P2 cone. This connection

10For reference, we summarize the equations of motion in appendix A.
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provides valuable insight into the near-stack solution, in particular because knowledge of
the solution for a compact four-cycle provides a regulator for divergences associated with
the noncompact nature of the four-cycle in the near-stack ansatz.11

We develop the ansatz using the C3/Z3 coordinates, and later shift to a different chart
appropriate for studying a small neighborhood of the resolved P2. As before, we wrap eight
D7-branes on the resolved P2 and orientifold using the involution zi → −zi combined with
−1 ∈ SL(2,Z). The Calabi-Yau metric has an isometry group U(3) which acts naturally
on the zi. However, zi → −zi lies within the U(1) factor, so nonzero G3 will spontaneously
break the U(1), leaving an SU(3) symmetry group. We now study the ansatz that arises
upon imposing this symmetry group. Since the orbifold action Z3 ⊂ SU(3), SU(3) singlets
are never projected out by the orbifold, and we need not consider Z3 invariance separately.

3.2.1 Metric ansatz for the P2 cone

The backreacted ten-dimensional metric will be of the form (3.10), where the internal
metric gmn must be invariant under the SU(3) symmetry. Since the symmetry group
acts transitively on the horizon, we are free to choose a particular point or region on the
horizon S5/Z3, and we select the z1 = z2 = 0 plane. The symmetry group within this
plane decomposes to SU(2) × U(1). The metric evaluated in this plane must take the
SU(2)×U(1) invariant form:

gmndymdyn= f1(|z3|)
(
z̄3/z3

)
dz3dz3 + c.c.+ f2(|z3|)dz3dz̄3 + f3(|z3|)(dz1dz̄1 + dz2dz̄2) .

(3.19)
Since f1 is complex, the metric depends on four real functions. We can construct the global
form of the metric by combining the invariant one-forms ∂ρ2, ∂̄ρ2, and

∑
i dzidz̄i:

gmndymdyn=
1
ρ2

f1(ρ)(∂ρ2)(∂ρ2) + c.c.+
1
ρ2

(
f2(ρ)− f3(ρ)

)
(∂ρ2)(∂̄ρ2) + f3(ρ)

∑
i

dzidz̄i .

(3.20)
This reduces to the local form given above at z1 = z2 = 0, as ∂ρ2 =

∑
i z̄
idzi. Since ρ2 is

SU(3) invariant, as is the complex structure, the ansatz (3.20) is manifestly invariant.
The metric (3.20) can always be made Hermitian by a suitable redefinition of the

complex structure that preserves the SU(3) symmetry,

zi → λ(ρ)zi , (3.21)

where λ ∈ C?. One can show that f1 can always be set to zero by an appropriate choice of
λ. We define

f2(ρ) ≡ ρ4e−4B(ρ) , f3(ρ) ≡ 1
ρ2
e2C(ρ) , (3.22)

to make the positivity of the metric explicit. Thus,

gmn(y)dymdyn =
(
ρ2e−4B(ρ) − 1

ρ4
e2C(ρ)

)∑
i,j

z̄izjdz
idz̄j + e2C(ρ) 1

ρ2

∑
i

dzidz̄i . (3.23)

11For example, α′ corrections induce D3-brane charge on certain compact four-cycles, but the topological

information determining this charge is lost in taking the near-stack limit.
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The choice of notation is not accidental; we will see shortly that in the near-stack limit
this form reduces to (3.15).

The corresponding Kähler form,

J =
i

2ρ2

(
ρ4e−4B(ρ) − 1

ρ2
e2C(ρ)

)
∂ρ2 ∧ ∂̄ρ2 +

i

2ρ2
e2C(ρ) ∂∂̄ρ2 , (3.24)

can be rewritten as J = e−4Bχ1,1 + e2Cω1,1, where

ω1,1 ≡
i

2ρ2

(
∂∂̄ρ2 − 1

ρ2
∂ρ2 ∧ ∂̄ρ2

)
, χ1,1 ≡

iρ2

2
∂ρ2 ∧ ∂̄ρ2 . (3.25)

Note that ω1,1 points along the base, and χ1,1 points along the fiber.
In components, the metric is

gij̄ =
ρ4

2
e−4BPij̄ +

1
2ρ2

e2C
(
δij̄ −Pij̄

)
, where Pij̄ =

1
ρ2
z̄izj̄ = δik̄δj̄lP

k̄l , zī ≡ δījzj , (3.26)

and Pmn is a real rank one projector satisfying P ijz
j = zi. The determinant of the metric is

8G ≡ 8 det gij̄ =
8
3!
εijkεl̄m̄n̄gil̄gjm̄gkn̄ =

√
det gmn = e−4B+4C . (3.27)

3.2.2 Kählerity and the Calabi-Yau metric

Let us rewrite the metric in terms of the alternate radial coordinate r ≡ 1
3ρ

3. We find

ω1,1 =
i

6r2

(
∂∂̄r2 − 1

r2
∂r2 ∧ ∂̄r2

)
, χ1,1 =

i

2r2
∂r2 ∧ ∂̄r2 . (3.28)

Note that dω1,1 = 0 and dχ1,1 = −3 dr2 ∧ ω1,1. The Kähler condition now takes a particu-
larly simple form:

dJ =
[
−3 e−4B +

1
2r
(
e2C
)′]

dr2 ∧ ω1,1 = 0 . (3.29)

Thus, Kählerity requires e−4B = 1
6r

(
e2C
)′, where f ′ ≡ d

drf . For a Kähler metric, (3.27)
implies

8G =
1
6r
(
e2C
)′
e4C =

1
18r

(
e6C
)′
. (3.30)

As a check, we consider the special case in which the metric is Calabi-Yau. The Ricci
form is

R = −i∂∂̄ logG = − i

2r
d
dr

[
G′

2rG

]
∂r2 ∧ ∂̄r2 − iG′

2rG
∂∂̄r2 = −1

r

d
dr

[
rG′

2G

]
χ1,1 −

3rG′

G
ω1,1 .

(3.31)
Thus, G′ = 0. We find the solution e6C = 9 g3

0

[
r2 + r2

0

]
, so that

e2C = g0

[
9
(
r2 + r2

0

)]1/3
, e−4B = g0

[
9
(
r2 + r2

0

)]−2/3
. (3.32)

For r0 > 0 this is the Calabi-Yau metric for the resolved P2 cone, and for r0 = 0 it describes
the singular P2 cone, for which the metric reduces to the canonical one on C3 with overall
scale g0.
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3.2.3 G3 ansatz for the P2 cone

We now enumerate the SU(3)-invariant p-forms of various ranks. The only invariant one-
forms are ∂ρ2 and its conjugate, which point along the fiber. In addition to the invariant
two-forms χ1,1 and ω1,1 discussed above, pointing along the fiber and the base, respectively,
there exists a complex invariant (2, 0) form pointing along the base:

ω2,0 ≡
1
6
εijkz

idzj ∧ dzk , (3.33)

Including the conjugate ω0,2 ≡ ω?2,0, this exhausts the list of invariant two-forms. All
invariant p-forms for p ≥ 3 can be written as wedge products of invariant one-forms and
two-forms. Note that ω2,0 ∧ ω1,1 = 0, as both point along the base. These results can be
checked by considering the z1 = z2 = 0 plane as in section 3.2.1.

We now consider the most general form of G3 that preserves the SU(3) and is odd
under zi → −zi. Since ω1,1 and χ1,1 are even under the involution, whereas ω2,0 and ω0,2

are odd, G3 takes the general form

G3 = g3,0(r)ω3,0 + g2,1(r)ω2,1 + g1,2(r)ω1,2 + g0,3(r)ω0,3 , (3.34)

where

ω3,0 ≡ dz1 ∧ dz2 ∧ dz3 =
1
r2
∂r2 ∧ ω2,0 = dω2,0 ≡ ω?0,3 , (3.35)

ω2,1 ≡
1
r2
∂̄r2 ∧ ω2,0 =

1
2ρ2

εklmzj̄z
kdz̄j̄ ∧ dzl ∧ dzm ≡ ω?1,2 . (3.36)

We immediately find ω1,1 ∧ G3 = χ1,1 ∧ G3 = 0; therefore G3 is automatically primitive.
In components, Gijk = εijkg3,0 and Gījk = 1

ρ2 zīεjklz
lg2,1.

3.2.4 D3-brane charge

The seven-brane stack wrapping the P2 can carry additional charges besides its seven-brane
charge, which is fixed by the −1 ∈ SL(2,Z) monodromy. However, since the horizon S5/Z3

has vanishing third Betti number, F3 and H3 must be exact, and the stack cannot carry
five-brane charge. We now show how to compute the D3-brane charge of the stack.

We define the D3-brane charge enclosed in a region R via the generalized Gauss’s law:

QD3(R) ≡ −
∮
∂R
F̃5 = (2π)4α′

2
ND3 , (3.37)

where D3-branes carry positive charge 2κ2
10 µ3 = (2π)4α′2, and there is a bulk contribution

from the three-form fluxes, QD3 =
∫
F3 ∧H3 +Qloc. Using (3.11), we obtain:

F̃5 = Ω4 ∧ dα− e−8A ?6 dα . (3.38)

Integrating over the S5/Z3 at constant radius and accounting for the Z2 involution, we find

QD3(r) =
∮
re4C−8A dα

dr

(
1
2
ω2

1,1 ∧ ω
)

=
π3

2
re4C−8A dα

dr
, (3.39)
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where ω ≡ 1
ir (∂ − ∂̄)r, ?6 ∂r = 1

2iJ
2 ∧ ∂r, and we use the periods∫

P2

1
2
ω2

1,1 =
1
2
π2 ,

∫
S5/Z3

1
2
ω2

1,1 ∧ ω = π3 . (3.40)

Since the integrands are closed, these integrals can be computed over any surface in the
specified homology class. The periods (3.40) can also be used to compute the volume of
the resolved P2:

vol(P2) =
1
2
π2 e4C(r)

∣∣∣∣
r→0

. (3.41)

The D3-brane defined by (3.37) is sourced in the bulk, and therefore not quantized.
We define the Page charge [23] via the flux integral12

QPage
D3 (R) ≡ −

∮
∂R

(
F̃5 +

1
2
C2 ∧H3 −

1
2
B2 ∧ F3

)
. (3.42)

The integrand is closed in the absence of sources, so the Page charge is not sourced in
the bulk. In the absence of local sources coincident with ∂R, the Page charge is invariant
under small gauge transformations of B2 and C2. It is not invariant under large gauge
transformations unless F3 and H3 are exact when pulled back to ∂R. It has been argued [24]
that the Page charge is quantized.

One can solve the Bianchi identity for G3 to obtain

A2 ≡
1
√
τ2

(C2 − τB2) = (g3,0 − g2,1)ω2,0 + (g0,3 − g1,2)ω0,2 . (3.43)

It is then straightforward to compute the Page charge of the stack by the same method as
above:

QPage
D3 =

π3

2

(
r e4C−8A dα

dr
+ 2 r2 |g3,0 − g2,1|2 − 2 r2 |g1,2 − g0,3|2

)
, (3.44)

where the right-hand side is independent of r as a consequence of the Bianchi identities.
Since F3 and H3 are exact, the Page charge is gauge invariant. Henceforward, when we
refer to the D3-brane charge of the solution, we mean the Page charge given by (3.44).

3.3 The near-stack limit of the P2 cone

We now apply the near-stack limit (3.6) to the above ansatz to recover the near-stack
ansatz described in section 3.1 and to fix the relationship between the fields. As before,
we apply the coordinate transformation (3.1), rescale as in (3.6), and truncate to leading
order in ε. Finally, since ε is a formal expansion parameter, we set ε = 1. We find

∂r2 → ∂r2
z , χ1,1 →

i

2
dz ∧ dz̄ , ω1,1 →

i

2

(∑
a

dua ∧ dūa
)
. (3.45)

12As there is more than one way to solve the F̃5 Bianchi identity, there are inevitable ambiguities in

defining the Page charge [24]. This difficulty does not arise in our setup due to the vanishing of the third

Betti number for the horizon ∂R = S5/Z3, so that all definitions are related by integration by parts.
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Thus, in particular

J → i

2

(
e−4Bdz ∧ dz̄ + e2C

∑
a

dua ∧ dūa
)
. (3.46)

We also find

G3 → g3,0dz∧du1∧du2+g2,1
z

z̄
dz̄∧du1∧du2+g1,2

z̄

z
dz∧dū1∧dū2+g0,3dz̄∧dū1∧dū2 . (3.47)

Therefore the quantities r, B, C, and gp,q defined in this section are appropriate general-
izations far from the stack of the quantities r, B, C, and gp,q defined in section 3.1, and the
two systems correspond in the near-stack limit. As an example, applying the near-stack
limit to the Calabi-Yau metric for the resolved cone (3.32) gives a flat metric with B and
C constant. The parameters r0 and g0 of the P2 ansatz can be recovered from

r0 =
1
3
e2Bns+Cns , g0 = e4(Cns−Bns)/3 , (3.48)

where Bns and Cns are the constant values of B and C in the near-stack ansatz.

4 Supersymmetry conditions

Our approach to learning about the gauge dynamics of compact seven-branes is to study the
allowed supersymmetric backgrounds surrounding the seven-brane stack subject to some
symmetry group, in the same spirit that early constructions of supersymmetric extremal
black holes in supergravity (cf. e.g. [25]) presaged the appearance of D-branes as localized
sources in supergravity.

In general, one expects AdS4 vacua from compactifications that are stabilized by gaug-
ino condensation on seven-branes [1]. This is because the superpotential generically devel-
ops a vev. If the compactification has finite warped volume, and therefore a finite four-
dimensional Newton constant, the superpotential vev generates a negative cosmological
constant, leading to an AdS4 compactification. Noncompact solutions may be Minkowski,
but we expect such solutions to arise in an appropriate decompactification limit of an
AdS4 solution.

We first consider general properties of supersymmetric AdS4 compactifications, and
return to the question of noncompactness below. As we will see, supersymmetric com-
pactifications of type IIB supergravity to AdS4 always have SU(2) structure.13 In our
case, the SU(2) structure is dynamic. As dynamic SU(2) structure is less familiar than the
more commonly studied strict SU(3) structure, we now review dynamic SU(2) structure in
AdS4 compactifications of type IIB supergravity, using tools from the more general field of
generalized complex geometry.

4.1 Review of SU(2) structure and generalized complex geometry

Having argued in section 1.2 that the supergravity solution should admit two spinors
(η1

+, η
2
+) that define a dynamic SU(2) structure, the next step is to analyze the gravitino

13While type-changing SU(3) structure loci are possible, there is still a local SU(2) structure away from

these loci. Global, i.e. “strict,” SU(3) structure is impossible in AdS4 compactifications [26].
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and dilatino variations for the supergravity ansatz introduced above. As shown in [7], the
supersymmetry analysis simplifies considerably in terms of bispinors. Here we review the
basic results from G-structures and generalized complex geometry needed for the rest of
the work. For a recent review with further explanations and references, see e.g. [27].

We work in ten-dimensional Einstein frame, with metric ansatz (3.10),

ds2
10 = e2A(y)hµν(x)dxµdxν + e−2A(y)gmn(y)dymdyn . (4.1)

The warp and conformal factors are already made explicit and all the geometric quantities
are constructed in terms of the internal metric gmn. The four-dimensional metric hµν is
that of AdS, with cosmological constant

Λ = −3|µ|2 . (4.2)

The supersymmetry conditions were obtained in [7, 28], in string frame. The conversion
from string frame to Einstein frame is done by modifying their warp factor A(S) and pure
spinors Ψ(S) as follows:

A(S) = A+
φ

4
, Ψ(S) = e(φ/4−A)p̂Ψ , (4.3)

where the definition of the operator p̂ is given by

p̂ Cp ≡ pCp (4.4)

for a p-form Cp. The rescaling in the pure spinor takes into account that the Mukai pairing
〈Ψ,Ψ〉 is normalized by the volume of the internal metric d6y

√
det gmn.

As in (1.1), we decompose the ten-dimensional Majorana-Weyl supersymmetry gener-
ators εi in Einstein frame,14

εi = ζ+ ⊗ ηi+ + ζ− ⊗ ηi− . (4.5)

The internal spinors ηi must have equal norms for an AdS4 compactification [28]. Preser-
vation of four-dimensional N = 1 supersymmetry then imposes the normalization

|η1
+|2 = |η2

+|2 = eA , (4.6)

up to an arbitrary overall rescaling.
The two internal spinors may be combined into even and odd bispinors,

Ψ+ = −8i e−A η1
+ ⊗ η

2†
+ , Ψ− = −8i e−A η1

+ ⊗ η
2†
− , (4.7)

where the extra warp factor dependence has been included for normalization purposes.
Using the Clifford map, these bispinors are sums of forms of different degrees (polyforms).
The supersymmetry conditions of [7] then become

dH
(
e(φ/4−A)p̂e4A Re Ψ+

)
=−3e(φ/4−A)p̂e3A−φ/4 Re(µ̄Ψ−)+e(2A−φ/2)(3−p̂)e4A+φ ?6λ(F ),

dH
(
e(φ/4−A)p̂e2A−φ/2 Im Ψ+

)
= 0 ,

dH
(
e(φ/4−A)p̂e3A−φ/4 Ψ−

)
=−2iµ e(φ/4−A)p̂e2A−φ/2 Im Ψ+ . (4.8)

14Using the conventions of [29], η− = Cη?+, where C is the charge conjugation matrix.
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Here dH ≡ d−H∧, and all fluxes are internal, with

F ≡ F1 + F̃3 + F̃
(int)
5 , λ(Ap) = (−1)p(p−1)/2Ap . (4.9)

When supplemented by the p-form Bianchi identities, the above supersymmetry condi-
tions imply all of the supergravity equations of motion (which we will verify explicitly in
our examples).15

Now, let us consider the geometric properties of manifolds with SU(2) structure [31].
It is convenient to introduce two globally defined orthonormal spinors η+ and χ+. They
are related by a vector Θm,

χ+ =
1
2

Θmγmη− , (4.10)

where |Θ|2 = 2. An SU(2) structure is then characterized by the following invariant forms:

Θm = η†−γmχ+ , (J2)mn = − i
2

(
η†+γmnη+ − χ†+γmnχ+

)
, (Ω2)mn = iχ†+γmnη+ . (4.11)

These satisfy

J2 ∧ Ω2 = Ω2 ∧ Ω2 = 0 , J2 ∧ J2 =
1
2

Ω2 ∧ Ω2 , ıΘΩ2 = ıΘJ2 = 0 . (4.12)

Algebraically, the tangent bundle has a product structure, where Ω2 and J2 may be thought
of as the holomorphic two-form and Kähler form for a complex-dimension two subspace of
the tangent bundle, and Θ and J1 ≡ i

2Θ∧ Θ̄ as the holomorphic one-form and Kähler form
for the complex-dimension one complement. However, this product structure is typically
not integrable, and the manifold need not be a direct product. Instead, we will think of the
manifold as a line bundle with J2 and Ω2 pointing along the base and Θ and Θ̄ pointing
along the fiber. This structure will turn out to be integrable in our examples, but this is
not guaranteed in general.

The SU(2) structure can be viewed locally as the intersection of two SU(3) structures,
each associated to one of the spinors. In particular, the SU(3) structure from η+ is defined
by

Jmn = −iη†+γmnη+ , Ωmnr = iη†−γmnrη+ . (4.13)

The forms (4.11) and (4.13) are related by

J = J2 +
i

2
Θ ∧ Θ̄ , Ω = Θ ∧ Ω2 . (4.14)

There are different ways of writing the spinors ηi+ in terms of (η+, χ+). In geometries with
orientifold planes it is most convenient to average η+ ∝ (η1

+ + ieiϑη2
+), where ieiϑ is the

relative phase between the two spinors [32, 33]. Thus we take

η1
+ = i ei ϑ/2 eA/2

(
cos

ϕ

2
η+ + sin

ϕ

2
χ+

)
, η2

+ = e−i ϑ/2 eA/2
(
cos

ϕ

2
η+ − sin

ϕ

2
χ+

)
. (4.15)

The warp factor is fixed by the normalization (4.6), and ϑ and ϕ parameterize the angle
between the spinors,

e−A η2 †
+ η1

+ = i eiϑ cosϕ . (4.16)
15In the presence of sources, one must also impose calibration conditions on the sources; cf. [30].

– 17 –



J
H
E
P
0
5
(
2
0
1
1
)
1
1
0

Using this, the bispinors may be expressed in terms of the SU(2) forms (4.11), yielding

Ψ+ = eiϑe
1
2

Θ∧Θ̄

[
cosϕ

(
1− 1

2
J2

2

)
+ sinϕ Im Ω2 − iJ2

]
,

Ψ− = Θ ∧
[
sinϕ

(
1− 1

2
J2

2

)
− cosϕ Im Ω2 + iRe Ω2

]
. (4.17)

It is straightforward to check by substituting this result into (4.8) that we must take
ei ϑ = ±1 for AdS4 solutions, where the extra sign can be absorbed by redefinitions. Thus,
we take ϑ = 0 without loss of generality.

The supersymmetry structure is characterized by the angle ϕ, which in turn determines
the types of Ψ+ and Ψ−.16 For static SU(2) structure (type (2, 1)), ϕ = π/2 and the two
internal spinors are everywhere orthogonal. For strict SU(3) structure (type (0, 3)), ϕ = 0
and the spinors are everywhere parallel; the polyforms simplify to Ψ+ = ei ϑe−iJ and
Ψ− = iΩ3. For intermediate SU(2) structure (type (0, 1)), 0 < ϕ < π/2, and the spinors
are neither parallel nor orthogonal.

If ϕ varies along the internal manifold, the SU(2) structure is said to be dynamic.
Dynamic SU(2) structure can be ‘type-changing’ if ϕ = 0 or ϕ = π/2 on some locus.
Our solution will turn out to be dynamic; for certain values of the parameters, it is also
type-changing with a ϕ = π/2 locus.

We now impose the orientifold projection O = Ωp(−1)FLσ, where σ is the involution,
FL is the number of left-moving fermions, and Ωp is the worldsheet parity. The involution
on the pure spinors (Ψ+,Ψ−) should reduce to the known result

σ(J) = J , σ(Ω) = −Ω , (4.18)

for an O3/O7, so that we have [28],

σ(Ψ+) = λ(Ψ+) , σ(Ψ−) = λ(Ψ−) , (4.19)

with λ defined in (4.9). Applying (4.19) to (4.17) gives

σ(J2) = J2 , σ(Ω2) = −Ω2 , σ(Θ) = Θ , σ(ϕ) = ϕ . (4.20)

In other words, in the basis (4.15) the orientifold action is realized as an explicit π rotation
in the (Re Ω2, Im Ω2) ‘plane’ of the space (J2,Re Ω2, Im Ω2) [33].

For strict SU(3) structure compactifications, we must take the holomorphic three-form
Ω to carry R-charge +2 [35]. Generalizing this, we see that Ψ− should carry R charge +2.
Thus, Θ and µ carry R-charge +2, while Ω2 and J2 are invariant.

Substituting (4.17) into (4.8), we obtain the supersymmetry conditions for compactify-
ing type IIB supergravity to AdS4. As remarked above, supersymmetric compactification
to AdS4 requires η1 †

+ η1
+ = η2 †

+ η2
+ and Re η2 †

+ η1
+ = 0. We refer to Minkowski (µ = 0)

solutions that satisfy these conditions as ‘AdS-like.’ The set of ‘AdS-like’ solutions may
16Here the ‘type’ of a polyform Ψ refers to the rank of the lowest-rank non-zero component of Ψ, as

in [34]. In what follows, type (m,n) refers to Ψ+ (Ψ−) of type m (n).
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be thought of as the closure of the set of AdS solutions, since a solution that arises upon
taking a limit in parameter space of an AdS solution must still satisfy η1 †

+ η1
+ = η2 †

+ η2
+ and

Re η2 †
+ η1

+ = 0, provided that η1 and η2 vary continuously in this limit. Thus, we expect
that noncompact solutions with gaugino condensation will be AdS-like. AdS-like solutions
with strict SU(3) structure are the well known type B supersymmetric solutions which arise
from F-theory compactifications.

The supersymmetry conditions for AdS and AdS-like compactifications can be rewrit-
ten in an SL(2,R) covariant form. In section 4.2, we briefly review SL(2,R) covariant
supergravity. In section 4.3, we present the covariant supersymmetry conditions, deferring
a detailed derivation to [36], and discuss their implications.

4.2 SL(2,R) covariant supergravity

It is well known that the action (3.8) is invariant under SL(2,R) transformations, where
τ = C0 + ie−φ transforms as τ → aτ+b

cτ+d , F3 and H3 mix as:(
F3

H3

)
→

(
a b

c d

)(
F3

H3

)
, (4.21)

with ad − bc = 1, and the metric and C4 are invariant. Accounting for brane sources
as required by string theory, this SL(2,R) breaks to the discrete subgroup SL(2,Z), but
this subgroup is gauged: monodromies are allowed, and indeed charged seven-branes carry
SL(2,Z) monodromies.

Since we are interested in studying nonperturbative effects on seven-branes, an ap-
proach that makes SL(2,Z) (and indeed SL(2,R)) invariance manifest is indispensable
(cf. e.g. [37]). It will be convenient to work with 1

τ2
dτ and the complex field strength and

potential

G3 ≡
1
√
τ2

(F3 − τH3) , A2 ≡
1
√
τ2

(C2 − τB2) . (4.22)

These transform by a τ -dependent phase under SL(2,R):

G3 →
|cτ + d|
cτ + d

G3 ,
1
τ2

dτ →
(
|cτ + d|
cτ + d

)2 1
τ2

dτ . (4.23)

These are both examples of a more general transformation law,

Ω→
(
|cτ + d|
cτ + d

)2Q

Ω , (4.24)

where Q is the ‘S-charge’ of Ω. In this language, G3 and A2 carry charge +1/2 and 1
τ2

dτ
carries charge +1.

Since the τ -dependent phase is in general nonconstant, the derivative of an S-covariant
quantity is not covariant. We introduce a covariant derivative ∂M → DM = ∂M + iQKM

where KM is a one-form connection. One can check that KM = 1
τ2
∂Mτ1 transforms

appropriately, where τ1 = Re τ . Thus, we define the covariant exterior derivative:

D Ω ≡ d Ω + iQ
1
τ2

dτ1 ∧ Ω . (4.25)
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It is easy to check that D is not nilpotent: D2 = iQ
τ2
2

dτ1 ∧ dτ2. We define the modified
covariant exterior derivative for Ω of charge +1/2:

D±Ω ≡ D Ω± i

2 τ2
dτ ∧ Ω? . (4.26)

Similarly, for Ω of charge −1/2, we define D±Ω ≡ D Ω± i
2 τ2

dτ̄ ∧Ω? = (D∓Ω?)?. One can
check that D+ and D− are both nilpotent.17 The G3 Bianchi identity now takes the simple
form D−G3 = 0, with the local solution G3 = D−A2.

Expressed in terms of τ and G3, the type IIB supergravity action (3.8) becomes

S=
1

2κ2
10

∫
d10x

√
−g(10)

[
R− 1

2

(
1
τ2

2

|dτ |2+|G3|2+
1
2
|F̃5|2

)]
− i

8κ2
10

∫
C4∧G3∧G?3 , (4.27)

where, in terms of G3 and A2, F̃5 takes the local form

F̃5 = dC4 +
(
i

4
A2 ∧G?3 + c.c.

)
, (4.28)

with the Bianchi identity d F̃5 = i
2 G3 ∧G?3 . One can then rewrite the equations of motion

as:18

D− ?10 G
?
3 = iG?3 ∧ F̃5 , D ?10

( 1
τ2

dτ̄
)

=
i

2
G?3 ∧ ?10G

?
3 , (4.29)

RMN =
1

4 τ2
2

(∇Mτ ∇N τ̄ + c.c.) +
1
2

[
|G3|2MN −

1
4
|G3|2 g(10)

MN

]
+

1
4
|F̃5|2MN , (4.30)

and in addition one must impose the self-duality constraint F̃5 = ?10F̃5. The action and
equations of motion are now manifestly covariant under SL(2,R) transformations.19

Consider the additional Z2 symmetry of type IIB supergravity under which all of the
RR fields are reversed (i.e. Cp → −Cp and Fp → −Fp). This is an exact (gauged) symme-
try of string theory which we denote Z(RR)

2 , corresponding for instance to the involution
associated with the O9 plane of the type I theory composed with the −1 ∈ SL(2,Z). In
the S-covariant language developed above, Z(RR)

2 takes the form:

G3 → −G?3 , τ → −τ? , F̃5 → −F̃5 . (4.31)

If Ω carries S-charge Q and transforms as Ω → −Ω? under Z(RR)
2 , then D Ω → −(D Ω)?.

For Q = ±1/2, D±Ω → −(D±Ω)?. Viewing Z(RR)
2 as diag(−1, 1) ∈ SL±(2,R), it com-

bines with the SL(2,R) invariance discussed above to generate the classical symmetry group
SL±(2,R), of which the subgroup SL±(2,Z) is an exact (gauged) symmetry of string theory.

17Note that D± are not C-linear (iD+ = D−i) and do not always obey the product rule.
18Here |Fp|2MN ≡ 1

2(p−1)!
(Fp)

M1...Mp−1
M

`
F ?p

´
M1...Mp−1N

+ c.c., so that gMN |Fp|2MN = p |Fp|2.
19The full supersymmetric action is also invariant [38].
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4.3 SL(2,R) covariant supersymmetry conditions for AdS4 compactifications

Henceforward, we work with the almost complex structure defined by the holomorphic
three-form Ω ≡ Ω2 ∧Θ with associated Kähler form J = J1 + J2, where J1 ≡ (i/2)Θ ∧ Θ̄.
Consistent with (4.20), we assign Ω2 an S-charge of −1/2 and take J2, Θ, and ϕ to be
invariant. G3 can be decomposed into pieces with zero, one, or two legs along the ‘fiber’
(Θ, Θ̄) directions. The supersymmetry conditions directly imply G3∧Θ∧J2 = G3∧Θ̄∧J2 =
0. Thus, a general decomposition takes the form [31]:

G3 =J1∧G1+J2∧G1+g3,0 Ω2∧Θ+g2,1 Ω2∧Θ̄+g1,2 Ω̄2∧Θ+g0,3 Ω̄2∧Θ̄+G1,1∧Θ+G1,1∧Θ̄ ,

(4.32)
where G1 and G1 are complex one-forms pointing along the base, the gp,q are complex
scalars, and G1,1 and G1,1 are complex primitive (1,1) forms pointing along the base. We
also decompose the gradient into fiber and base directions:

df = (∂Θf) Θ + (∂̄Θf
)

Θ̄ + dΠf . (4.33)

Applying these decompositions to the supersymmetry conditions and simplifying, we
obtain:

d
[
e4Acϕ

]
=−3 e2A sϕ Re (µ̄Θ) + dα , d

[
e2AsϕΘ

]
= 2iµ (cϕJ1 + J2) , d [cϕJ1 + J2] = 0 ,

(4.34)

D+

[
e2AsϕΩ2

]
= cϕe

4AG?3 − ie4A ? G?3 +
3µ̄
2

(1 + cϕ)Ω2 ∧Θ− 3µ
2

(1− cϕ)Ω2 ∧ Θ̄ , (4.35)

g3,0 =−1− cϕ
2sϕ

e−2A i

τ2
∂Θτ , g2,1 =

1 + cϕ
2sϕ

e−2A i

τ2
∂̄Θτ , (4.36)

g1,2 = µ̄ e−4A +
1 + cϕ

2sϕ
e−6A∂ΘΦ− , g0,3 = µ e−4A − 1− cϕ

2sϕ
e−6A∂̄ΘΦ+ (4.37)

G1,0 ∧ J2 =−s−1
ϕ e−2A

(
i

τ2
dΠ τ

)
∧ Ω2 , G1,0 = −cϕG1,0 , (4.38)

G0,1 ∧ J2 =−s−1
ϕ e−6A

(
dΠ

[
e4A
]
− cϕdΠα

)
∧ Ω̄2 , (4.39)

G0,1 ∧ J2 = s−1
ϕ e−6A

(
cϕdΠ

[
e4A
]
− dΠα

)
∧ Ω̄2 , (4.40)

where cϕ and sϕ are shorthand for cosϕ and sinϕ, and

Φ± ≡ e4A ± α . (4.41)

By referring to the charge assignments of table 1, one can verify that the above equations
are manifestly invariant under SL(2,R), and also under a U(1)R symmetry.

In fact, the supersymmetry conditions (4.34)–(4.40) are covariant under the full
SL±(2,R) classical symmetry group of type IIB supergravity, which is generated by
SL(2,R) transformations and by diag(−1, 1) ∈ SL±(2,Z). The latter transforma-
tion, (4.31), takes G3 → −G?3, τ → −τ?, and α → −α, along with Ψ± → −Ψ±, so
that

Ω2 → −Ω?
2 , ϕ→ ϕ+ π , J2 → −J2 , (4.42)
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S-charge R-charge S-charge R-charge
G3, Ω̄2 +1/2 0 g1,2 0 −2
δτ/τ2 +1 0 g0,3 0 +2
µ,Θ, ∂̄Θ 0 +2 G1,G1 +1/2 0

g3,0 +1 −2 G1,1 +1/2 −2
g2,1 +1 +2 G1,1 +1/2 +2

Table 1. The S-charge and R-charge of various fields; δτ represents any differential of τ .

with the appropriate transformations on the components of G3. In addition, the super-
symmetry conditions possess the Z2 symmetry

Θ→ −Θ , ϕ→ −ϕ , Ω2 → −Ω2 , (4.43)

under which the polyforms Ψ+ and Ψ− are invariant.
The supersymmetry conditions for type B solutions are well known, and are easily

derived from (4.8): τ must be holomorphic, J must be closed, Φ− must vanish, G3 must be
primitive and of Hodge type (2, 1), and d(eφ/2 Ω) = 0, which can be restated covariantly as
DΩ = 0. Unlike type B solutions, AdS and AdS-like SU(2) structure solutions need not be
Kähler or even complex. Taking the (1, 2) component of (4.35) and applying (4.36), (4.38)
we obtain

[d Ω2]1,2 =
1
2
sϕ e

2AJ2 ∧ (G1,0)? − 1− cϕ
sϕ

e2A Θ̄ ∧ (G1,1)? . (4.44)

Applying (4.34), we find [d Ω]2,2 = [d Ω2]1,2 ∧ Θ. Thus, the almost complex structure
associated with Ω = Ω2∧Θ is integrable if and only if G1,0 and G1,1 both vanish. Similarly,
the Kähler form J is not in general closed. Applying (4.34), we find

dJ = −2µ e−2A 1− cϕ
sϕ

J2 ∧ Re Θ− e−4A

(
1− cϕ
1 + cϕ

)
d Φ+ ∧ J1 . (4.45)

Adding (4.39) and (4.40), we see that dΠ Φ+ vanishes if and only if G0,1 + G0,1 = 0. Thus,
J is closed if and only if the solution is Minkowski with G0,1 = −G0,1. Using (4.38), the
above conditions on G0,1 and on the pair G0,1 and G0,1 can be efficiently restated as the
requirement that G2,1 and G1,2 be primitive, respectively.

In [10] it is argued that the appropriate generalization of the Gukov-Vafa-Witten on-
shell flux superpotential [39, 40] to generalized complex geometry solutions is the on-shell
superpotential

W =
1

4κ2
10

∫ (
e3A(S)−φ Ψ(S)

−

)
∧ λ(F ) , (4.46)

where A(S) and Ψ(S)
− are related to the Einstein frame quantities A and Ψ− by (4.3),

λ is defined in (4.9), and the integral is over the compact manifold. Supersymmetric
AdS solutions correspond to a nonvanishing superpotential vev. Using the supersymmetry
conditions (4.34)–(4.40), we can evaluate (4.46) explicitly. We find

W = − µ

κ2
10

∫
d6y
√
g e−4A = − µ

κ2
4

, (4.47)
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in exact agreement with the four-dimensional supergravity result Λ = −3κ4
4 |W |2, where

κ2
4 is the four-dimensional Newton constant. The limit of rigid supersymmetry, κ2

4 → 0, is
more subtle, as the integrand of (4.46) vanishes on-shell, but the integral is taken over an
infinite volume.

5 Supergravity solution in the near-stack region

In this section we search for supersymmetric solutions to the ansatz described in section 3.1.
First, as a warmup we describe type B solutions to this ansatz. The axiodilaton must be
holomorphic, but can only depend on the real coordinate r, so it is a constant, τ = C0 + i

gs
.

Thus, the solution is conformally Calabi-Yau, with B and C constant, consistent with the
near-stack limit of the metric (3.32). The only nonvanishing component of G3 is G2,1,
which must be closed by the G3 Bianchi identity; thus, g2,1 = e2C k2,1/r

2. Finally, we take
α = e4A = Φ+/2, and solve the F̃5 Bianchi identity, (A.9), which gives:

1
r

d
dr

(
r
(
Φ−1

+

)′) = −2 e−4C |g2,1|2 , (5.1)

where primes denote derivatives with respect to r. We integrate to obtain Φ−1
+ = k0 +

k1 log r − 1
2r2 |k2,1|2. Comparing with (3.44), we see that k1 is related to the D3-brane

charge:
QD3 = −π3 r e4C (Φ−1

+ )′ + π3 r2 |g2,1|2 = −π3 e4C k1 , (5.2)

where (π2/2)e4C is the volume of the resolved P2 and the near-stack approximation is valid
for r � r0, where r0 = 1

3 e
2B+C , as in (3.48).

5.1 Supersymmetry conditions in the near-stack region

We now apply the supersymmetry conditions for AdS and AdS-like vacua (section 4.3) to
the near-stack ansatz of section 3.1. We assume that the internal spinors η1 and η2 are
singlets under the SU(3) symmetry group, so that Ω2, J2, Θ and ϕ are also singlets under
the SU(3).

The only invariant one-forms are 1
z dz and its conjugate, up to a radially-dependent

factor. In order to satisfy the orthonormality conditions g−1(Θ,Θ) = 0 and g−1(Θ, Θ̄) = 2,
we must take

Θ = e−2B+i θ r

z
dz , (5.3)

for some real θ = θ(r). Ω2 must be a complex two-form that is odd under the involution z →
−z, and that satisfies iΘ Ω2 = 0, Ω2∧Ω2 = 0, with the normalization vol6 = 1

4J1∧Ω2∧ Ω̄2.
Therefore, we must have

Ω2 = e2C+i ξ z

r
du1 ∧ du2 , (5.4)

for some phase factor ξ = ξ(r), and the complex structure defined by Ω = Ω2 ∧ Θ is
integrable by inspection. Then, (5.3) and (5.4) uniquely determine J1 and J2:

J1 =
i

2
e−4Bdz ∧ dz̄ , J2 =

i

2
e2C

(
du1 ∧ dū1 + du2 ∧ dū2

)
. (5.5)
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Applying (4.34), we see that J2 is closed, since ϕ = ϕ(r) is a singlet scalar, and therefore
cϕ J1 is closed by (5.5). Thus, C is constant and the metric is Kähler. By (4.45), the
solution must be Minkowski (µ = 0).20

Applying µ = 0 to the first equation of (4.34) and integrating, we find

α = cϕ e
4A , (5.6)

where we fix the α shift symmetry. The middle equation of (4.34) gives

e2A sϕ Θ =
c1

z
dz , (5.7)

where c1 is a complex constant. Thus,

rsϕ e
2(A−B)+iθ = c1 , (5.8)

and θ must be constant. Combining (5.6), (5.8) to eliminate ϕ, we find

Φ+Φ− =
|c1|2

r2
e4(A+B) . (5.9)

Henceforth, we assume that c1 6= 0, since the special case c1 = 0 is just a type B solution,
as discussed above. For c1 6= 0, ϕ 6= 0, π, and so (5.6) implies that |α| < e4A, and therefore

Φ± > 0 . (5.10)

Now consider the decomposition of G3, (4.32). SU(3) invariance constrains G1, G1,
G1,1, and G1,1 to vanish. Thus, we decompose:

G3 = g3,0 Ω2 ∧Θ + g2,1 Ω2 ∧ Θ̄ + g1,2 Ω̄2 ∧Θ + g0,3 Ω̄2 ∧ Θ̄ , (5.11)

where the gp,q are related to the gp,q of section 3.1 by

g3,0 = e2(C−B)+i (ξ+θ)g3,0 , g2,1 = e2(C−B)+i (ξ−θ)g2,1 ,

g1,2 = e2(C−B)−i (ξ−θ)g1,2 , g0,3 = e2(C−B)−i (ξ+θ)g0,3 . (5.12)

The conditions (4.38)–(4.40) are now trivially satisfied. We use the above decomposition
to write out the remaining conditions. Applying (5.6), (4.35) becomes

D+

[
e2A sϕ Ω2

]
= Φ+ (G3,0 +G1,2)? − Φ− (G2,1 +G0,3)? , (5.13)

since G3 is primitive. Next, (4.36), (4.37) become:

g3,0 = −r e
−4A

4 c1
Φ−

i τ ′

τ2
, g2,1 =

r e−4A

4 c̄1
Φ+

i τ ′

τ2
, (5.14)

g1,2 =
r e−8A

4 c1
Φ+Φ′− , g0,3 = −r e

−8A

4 c̄1
Φ−Φ′+ , (5.15)

20This is an artifact of the near-stack approximation: (4.34) requires µ 6= 0 for ϕ 6= 0 solutions on the P2

cone. The AdS-like solutions obtained in this section may be viewed as ‘approximately AdS,’ in that they

approximate solutions on the P2 cone with small cosmological constant.
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where we have

df(r) = f ′(r) dr = f ′(r) e2A sϕ Re
[
r

c1
Θ
]
, (5.16)

so that

∂Θf = e2A sϕ
r

2 c1
f ′(r) . (5.17)

It is convenient to fix an SL(2,R) frame. To do so, we choose some radius r and
perform an SL(2,R) transformation to make τ ′/τ2 imaginary. Thus, at radius r, g3,0 g0,3

and g2,1 g1,2 are both real. However, in this case the axion equation of motion (A.11) reads
C ′′0 = 0. Thus, in this frame the axion is constant, so that iτ ′/τ2 = φ′. More general
solutions can be recovered from this special case by an SL(2,R) transformation.

We evaluate the left-hand side of (5.13), taking dC0 = 0:

D+

[
e2A sϕ Ω2

]
=d

[
e2A sϕ Ω2

]
− 1

2
e2A sϕ dφ ∧ Ω̄2 . (5.18)

Using (5.16), it is straightforward to check that the second term cancels against the (1, 2)+
(0, 3) component of the right-hand side of (5.13).21 We are left with

d
[
e2A sϕ Ω2

]
= Φ+G

?
1,2 − Φ−G?0,3 . (5.19)

We evaluate the exterior derivative using (5.4) and (5.16):

d
[
e2A sϕ Ω2

]
=

1
2 c1

e2A−i ξsϕ
d
dr

(
re2A+i ξsϕ

)
Θ∧Ω2 +

r2

2 c̄1
e2A−i ξsϕ

d
dr

(1
r
e2A+i ξsϕ

)
Θ̄∧Ω2 .

(5.20)
Comparing with (5.15), we see that ξ must be a constant. After some manipulation, (5.19)
becomes

1
r2

d
dr

(
r2e−4A Φ+Φ−

)
= e−8A Φ2

−Φ′+ , r2 d
dr

( 1
r2
e−4A Φ+Φ−

)
= e−8A Φ2

+Φ′− . (5.21)

Defining Ξ± ≡ Φ−1
± , both halves of (5.21) reduce to

2
r

(Ξ+ + Ξ−) = Ξ′− − Ξ′+ . (5.22)

Now (5.9) can be rewritten as

B = −1
4

log
[
|c1|2

2 r2
(Ξ+ + Ξ−)

]
. (5.23)

The supersymmetry conditions for the near-stack ansatz of section 3.1 are therefore equiva-
lent to (5.10), (5.14), (5.15), (5.22), (5.23), where, in a general SL(2,R) frame, D ei ξ = 0.22

21This could have been anticipated from the integrability of the complex structure defined by Ω2 ∧Θ.
22Like Ω2, eiξ carries S-charge −1/2.
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5.2 Solutions in the near-stack limit

We define
∆(r) ≡ 1

2

(
Ξ− − Ξ+

)
, f(r) ≡ Ξ− + Ξ+ = r∆′ , (5.24)

where the final equality follows from (5.22). To further constrain the solution, we must
impose the equations of motion. In fact, we will only need two: the φ equation of motion
and the B equation of motion.

First, from the dilaton equation of motion (A.11) we find

1
r

d
dr
[
rφ′
]

= 8 e4A−4C
(
g3,0g0,3 + g2,1g1,2

)
= −

Ξ′+ + Ξ′−
Ξ+ + Ξ−

φ′ , (5.25)

in the constant axion frame, so that

φ′ =
2 c2

r (Ξ+ + Ξ−)
, (5.26)

where c2 is another constant.
Now consider the B equation of motion (A.17), which can be written

1
r

d
dr
[
rB′
]

=
Ξ′+Ξ′−

2 (Ξ+ + Ξ−)2 +
1
8
(
φ′
)2
. (5.27)

Inserting (5.23), we find

1
r

d
dr
[
r
(
Ξ′+ + Ξ′−

)]
=

(
Ξ′+
)2 +

(
Ξ′−
)2

(Ξ+ + Ξ−)
− 1

2
(Ξ+ + Ξ−)

(
φ′
)2
. (5.28)

It is straightforward to check that the Ξ± equations of motion (A.9), (A.10) are satisfied
provided that (5.28) and the supersymmetry constraints are obeyed. Substituting (5.26)
and (5.24), (5.28) takes the form

1
r

d
dr
[
rf ′
]

=
1
f

[
1
2
(
f ′
)2 +

2
r2

(f2 − c2
2)
]
. (5.29)

A general solution is of the form23

f(r) = c3r
2 + c4r

−2 + c5 . (5.30)

Substituting this result into (5.29), one obtains

c2
2 = c2

5 − 4 c3 c4 . (5.31)

We integrate once more to find

∆(r) =
1
2
c3 r

2 − 1
2
c4 r
−2 + c5 log r + c6 . (5.32)

23To see this, first differentiate (5.29) with respect to r, obtaining a third-order equation whose nonlinear

terms can be eliminated using (5.29). The result gives 1
r

d
dr

[rg′] = 4
r2
g where g(r) ≡ rf ′(r). The solution

is then easy to guess.
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Thus,

Ξ+ = (c5/2− c6) + c4 r
−2 − c5 log r , Ξ− = (c5/2 + c6) + c3 r

2 + c5 log r , (5.33)

and (5.26) becomes:

φ′ =
2 c2

r (c3 r2 + c4 r−2 + c5)
. (5.34)

This can be integrated to give

φ(r) = φ0 + log
[

(c5 + c2) r2 + 2 c4

(c5 − c2) r2 + 2 c4

]
, (5.35)

where we use (5.31).
The full solution is given by (5.33), (5.35), (5.14), (5.15), (5.23), where Ξ± ≡

Φ−1
± as above. It is straightforward to check that the remaining equations of mo-

tion (A.12)–(A.15), (A.18) are automatically satisfied. An interesting special case is where
c2 = 0, or c2

5 = 4 c3 c4, so that φ′ = 0. This implies that g3,0 = g2,1 = 0, but g1,2 and g0,3

are nonvanishing. These are explicit examples of constant τ solutions that are not type
B solutions.

5.3 Beyond the near-stack limit

We now briefly consider the extension of our methods to the full P2 cone. We must have

Θ =
1
r
e−2B+i θ ∂ r2 , (5.36)

which agrees with (5.3), since r2 → |z|2 in the near-stack limit. We compute

d
[
e2A sϕ Θ

]
=

i

r

d
dr

[
r sϕ e

2(A−B)+i θ
]
χ1,1 + 6 i r sϕ e2(A−B)+i θ ω1,1

= 2 i µ
(
cϕ e

−4B χ1,1 + e2C ω1,1

)
, (5.37)

where we used (3.28), (4.34) and the decomposition J1 = i
2 Θ∧ Θ̄ = e−4Bχ1,1 and therefore

J2 = J − J1 = e2C ω1,1. Comparing the terms proportional to ω1,1 in (5.37), we find

3 r sϕ e2(A−B)+i θ = µ e2C . (5.38)

Thus, for sϕ 6= 0, we must take µ 6= 0, and the solution is always AdS. Using methods
similar to those in section 5.1, one can check that supersymmetric AdS solutions with global
SU(3) symmetry of this type do exist. The resulting ODEs are nonlinear and difficult to
solve except in certain special cases, and we defer further consideration of this problem to
a later work.

Comparing (5.38) with (5.8), we see that c1 of the near-stack ansatz is related to µ via

c1 =
µ

3
e2Cns , (5.39)

where Cns is the constant near-stack value of C.
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6 Geometry of the near-stack solution

6.1 Singularity structure

The solution found in section 5 depends on several parameters: the ci (i = 1 . . . 6), gs = eφ0 ,
C, ξ, and C0. The ci must obey the relation (5.31), and in particular we must have

c2
5 > 4c3c4 . (6.1)

The explicit solution is given by

Ξ+(r) = (c5/2− c6) + c4 r
−2 − c5 log r , Ξ−(r) = (c5/2 + c6) + c3r

2 + c5 log r , (6.2)

τ =C0 +
i

gs

(
(c5 − c2)r2 + 2c4

(c5 + c2)r2 + 2c4

)
, B =

1
4

log
[

2 r4

|c1|2 (c4 + c5r2 + c3r4)

]
, (6.3)

with fluxes specified in (5.14), (5.15). The spinor angle ϕ varies with radius,

cos ϕ = α e−4A =
−c4 + 2 c6 r

2 + 2 c5 r
2 log r + c3 r

4

c4 + c5 r2 + c3 r4
, (6.4)

so the solution has dynamic SU(2) structure.
For the ϕ 6= 0, π (i.e. non-type B) case that we are considering, the ci must all be finite

or vanishing, and the solution is regular and supersymmetric whenever the Ξ± are both
positive. We now show that a singularity (i.e. a zero in either Ξ+ or Ξ−) always occurs at
finite radius. Consider the sum (cf. (5.24)):

r2f(r) = r2(Ξ+ + Ξ−) = c4 + r2 c5 + r4 c3 . (6.5)

This must be positive as a necessary but insufficient condition for regularity and super-
symmetry.

Assume that there exists a solution that is smooth at all finite radii. To maintain
regularity in the large and small r regions, we must have c4 > 0 and c3 > 0, and moreover,
since the discriminant of the quadratic polynomial r2f(r) is nonnegative by (6.1), c5 must
be nonnegative, or else Ξ+ + Ξ− acquires a root at some finite radius. However, under
these conditions Ξ+ will become negative at small r unless c5 = 0. If this is the case, then
either c3 or c4 must vanish by (6.1), and c6 must be respectively either positive or negative
to obtain a regular solution anywhere. In either case, one of Ξ+ or Ξ− is constant, whereas
the other crosses zero at some finite radius. Thus, a singularity will always occur at some
radius. The constraint (6.1) plays a crucial role in this argument.

A singularity at finite radius is always of the eA → ∞ type. It is straightforward to
check that curvature invariants diverge and the singularity is physical. Moreover, horizons,
characterized by eA → 0, can only occur for r → 0 and/or for r → ∞, so the singularity
is naked.

We now classify the available regions of parameter space for which a regular solution
exists at some radius. Clearly we must have f = Ξ+ + Ξ− > 0. However, this is also
sufficient at any given point for some choice of c6, since we can always set Ξ+ = Ξ− at any
point of interest by adjusting c6. If either c3 or c4 is positive, then f is positive at large or
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Figure 1. (c3, c4, c5) parameter space. The region inside the cones is excluded. The surface of the
negative cone is also excluded, whereas the surface of the positive cone consists of constant dilaton
solutions. Hyperbolae of constant c3 c4 are related by radial rescaling.

small r, respectively, and c6 can be chosen such that a regular region exists. For solutions
with neither c3 nor c4 positive, one can check that a region of positive f exists so long as
c5 is positive and the inequality c2

5 > 4c3c4 is not saturated.

The space of available (c3, c4, c5) can be imagined as R3 minus two cones, a ‘positive’
cone in the region c3, c4 > 0 given by c2

5 < 4c3c4, and a ‘negative’ cone in the region
c3, c4 < 0 given by c5 6

√
4c3c4. The surface of the positive cone is available, and consists

of the constant dilaton solutions (c2 = 0), whereas the surface of the negative cone is
unavailable. Not all points in this space are physically distinct, as radial rescalings r → λ r

trace out hyperbolae c3 c4 = const. The (c3, c4, c5) parameter space is depicted in figure 1.

6.2 Constant dilaton solutions

The space of solutions is large and complicated, and without an explicit mechanism for
resolving the singularity and lacking an asymptotic AdS region for comparisons with a
boundary field theory, it is hard to anticipate which of these solutions will be realized
physically. We will focus on one of the simplest classes, in which the dilaton is constant
(c2 = 0).24 These are the solutions that lie on the positive cone c2

5 = 4c3c4 with c3, c4 > 0,
as noted above. We will not consider the special cases where either c3 or c4 vanishes, so

24One motivation for considering this class of solutions is that string loop corrections can be controlled

parametrically by taking gs � 1. Although gs is still available as a control parameter, the situation is more

complicated when the dilaton runs.
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c5 6= 0 in general. It is convenient to reparameterize:

c3 =
|c5|
2 r2

?

, c4 =
|c5| r2

?

2
, c6 =

1
2
δ |c5| − c5 log r? , (6.6)

where c5 is related to the D3-brane charge. Using (3.44), we compute

Q = π3 e4Cc5 , (6.7)

where Q is the Page charge. We find that

Ξ+(r) =
|Q|
2π3

e−4C

[
r2
?

r2
+ sgn(Q) (1− 2 log r/r?)− δ

]
, (6.8)

Ξ−(r) =
|Q|
2π3

e−4C

[
r2

r2
?

+ sgn(Q) (1 + 2 log r/r?) + δ

]
, (6.9)

where sgn(Q) is the sign of Q.
We consider the case of positive and negative Q separately. For positive Q, Ξ− is a

strictly increasing function of r, whereas Ξ+ is a strictly decreasing function of r. Then,
f = Ξ+ + Ξ− ∝ (r2+r2

?)2

r2r2
?

is positive everywhere, so the solution can be made regular in any
region by an appropriate choice of δ. However, Ξ+ → −∞ as r → ∞ and Ξ− → −∞ as
r → 0, so the solution is only valid between two radii r1 and r2 > r1 where Ξ− and Ξ+

cross zero, respectively. One can easily show that

r2 = r?

[
W0(eδ−1)

]−1/2
, r1 = r?

[
W0(e−δ−1)

]1/2
, (6.10)

where W0 is the main branch of the Lambert W-function. In particular, the ratio of the
two scales is

(r2/r1)2 =
[
W0(eδ−1)W0(e−δ−1)

]−1
. (6.11)

This ratio is minimized at δ = 0, where it takes the value r2/r1 = [W0(1/e)]−1 ' 3.59. For
|δ| > 0, the ratio increases, and asymptotically for large |δ|, we find

(r2/r1)2 → |δ|−1e1+|δ| , (6.12)

so the region of regularity can be made very large for modest values of δ.
For the case of negative Q, Ξ+ and Ξ− have a single minimum at r?, and f ∝ (r2−r2

?)2

r2r2
?

=
0 at r = r?, so the solution can be made regular anywhere but at r?. For any choice of
δ, the solution is regular for r > r2 and r < r1, where for δ > 0 both singularities are
due to Ξ+ crossing zero, and for δ < 0 both are due to Ξ− crossing zero. The radii of the
singularities for δ > 0 are

r1 = r?

[
−W−1(−e−1−δ)

]−1/2
, r2 = r?

[
−W0(−e−1−δ)

]−1/2
, (6.13)

where W−1 is the lower branch of the Lambert W-function. For δ < 0, we have instead

r1 = r?

[
−W0(−eδ−1)

]1/2
, r2 = r?

[
−W−1(−eδ−1)

]1/2
. (6.14)
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Figure 2. The singularity structure of the constant dilaton solutions. The horizontal axis is r/r?
and the vertical axis is δ. The nonsingular region is unshaded and Ξ+ (Ξ−) is negative in the blue
(red) region. The first (second) plot corresponds to positive (negative) Q.

For the special case δ = 0, r1 = r2 = r?, and the solution is regular everywhere
else. This special case has interesting properties. For instance, the spinor angle is finite
everywhere:

cosϕ =
r4 − r4

? − 4 r2 log(r/r?)
(r2 − r2

?)2
. (6.15)

We see that ϕ interpolates between ϕ = 0 as r →∞ and ϕ = π as r → 0, passing through
a type-changing locus (ϕ = π/2) coincident with the singularity at r = r?.

The singularity structure of constant dilaton solutions is illustrated in figure 2 for
both positive and negative Q. The special case discussed above corresponds to δ = 0 in
the second plot of the figure.

6.3 Domain of validity of the near-stack solutions

While we have obtained a family of closed-form solutions to the supergravity equations,
our result is subject to corrections from a number of sources. Though string loop correc-
tions can be controlled parametrically for constant dilaton solutions, the solutions we have
obtained are always singular at some finite radius, and so α′ corrections will invariably be
large in some regions. Furthermore, the near-stack approximation employed in section 3.1
also has a finite region of validity. Generically we expect an interplay between these two
sources of corrections, as curvatures should fall off at large distances whereas the near-stack
approximation is valid at short distances. We now estimate the size of corrections from
various sources, and show that in some regions of parameter space we can parametrically
suppress all corrections in some finite interval rnear < r < rfar.

6.3.1 Corrections to the near-stack limit

Corrections to the near-stack limit of section 3.1 come in two forms. At large distances
from the stack wrapping the resolved P2, the resolution appears as a small perturbation
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to the geometry, and the seven-branes appear to be codimension six sources, rather than
codimension two sources as they do in the near-stack limit. This effect manifests itself in
the Einstein equations for the P2 cone as extra terms of order (r/r0)2 and (r/r0)4, where
r0 is the radial scale of the blow-up, as in (3.48); that is, one can show that the Einstein
equations (A.16), (A.17), (A.18), written in the form

r2B′′ = . . . , r2C ′′ = . . . , 2 r C ′ = . . . , (6.16)

receive corrections of the form r2 e−4B−2C and r4 e−8B−4C . (In the remainder of this
section, we will omit numerical factors in expressions of the form a� b.)

Assuming that dimensionless terms of the form rB′, etc., are of order unity, the extra
terms are suppressed if

r2 e−4B−2C � 1 . (6.17)

By (3.48), this is equivalent to the requirement (r/r0)2 � 1.
The other source of corrections to the near-stack limit is the finite cosmological constant

Λ = −3 |µ|2. This sources new terms in the Einstein equations and the warp factor equation
of the form r2 e−4(A+B) Λ, as in (A.10), (A.16), (A.17), (A.18). Applying the relation (5.39),
we obtain the requirement

r2 e−4(A+B+C) |c1|2 � 1 . (6.18)

Using (5.9), (5.23) the conditions (6.17), (6.18) can be rewritten in the form:

|c1|2 e−2C (Ξ+ + Ξ−)� 1 , |c1|4 e−4C Ξ+ Ξ− � 1 . (6.19)

However, for Ξ± > 0,

|Ξ+ Ξ−| ≤
1
4

(Ξ+ + Ξ−)2 . (6.20)

Therefore, for supersymmetric solutions, the second bound in (6.19) is implied by the first.
For solutions with nonvanishing Q, it is convenient to extract an overall scale from Ξ±:

Ξ± =
|Q|
2π3

e−4C F± , (6.21)

where for constant dilaton solutions, the F± are given by the bracketed terms in (6.8), (6.9).
The bound (6.19) becomes

ζ |Q| (F+ + F−)� 1 , (6.22)

where ζ ≡ |c1|2 e−6C . The constants c1 and eC naturally appear in physical quantities in
this combination, since both can be rescaled by redefining the four-dimensional coordinates
xµ → λxµ and absorbing the rescaling into the warp factor and the six-dimensional metric,
leaving the ten-dimensional metric invariant; ζ is invariant under this rescaling.

6.3.2 Curvature corrections

To estimate the size of α′ corrections, we compute the ten-dimensional Riemann tensor
components in Einstein frame. We assume that corrections can be suppressed if these
components (expressed in an orthonormal basis) can be made parametrically small in
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units of α′. The size of α′ corrections in Einstein frame will actually depend on gs, since
the F-string tension depends on gs in this frame. However, if we restrict our attention to
constant dilaton solutions, and fix some small value of gs to suppress string loop corrections,
this will only modify the curvature scale at which corrections set in by a fixed factor, and
parametric control of the Einstein-frame curvature is still sufficient to suppress corrections.
We will not consider corrections involving the other supergravity fields.25

The ten-dimensional Riemann tensor for the metric (3.10) can be computed using
standard methods. Expressing everything in an orthonormal basis, one finds terms of the
form e−2A [R(4)]µνρσ, e2A [R(6)]mnpq, e2A (∇mA)(∇nA), and e2A∇m∇nA, where [R(4)]µνρσ
are the components of the four-dimensional Riemann tensor computed from hµν , [R(6)]mnpq
are the components of the (unwarped) six-dimensional Riemann tensor computed from gmn,
and∇ is the connection computed from gmn. We assume that the near-stack approximation
holds in the region of interest, and use the ansatz of section 3.1 to compute

e2A[R(6)]r̂ψ̂r̂ψ̂ = 2 e2A+4B

(
B′′ +

1
r
B′
)
, e2A(∇r̂A)(∇r̂A) = e2A+4B(A′)2 , (6.23)

e2A∇r̂∇r̂A= e2A+4B(A′′ + 2A′B′) , e2A∇ψ̂∇ψ̂A = e2A+4B

(
1
r
A′ − 2A′B′

)
,

where all other terms vanish. If we repeat this computation for the full P2 geometry, we
obtain extra terms which are suppressed in the near-stack limit, but which scale similarly
to those above. However, we also obtain a contribution from the cosmological constant
which scales distinctly:

e−2A[R(4)]
µ
νρσ = −|µ|2 e−2A

(
δµρ ηνσ − δµσ ηνρ

)
. (6.24)

Taking rA′ and other dimensionless derivatives of A and B to be of order unity, all the
components in (6.23) are of the same order, as determined by the prefactor, whose square
is:

1
r4
e4A+8B =

(
|c1|4

2
Ξ+ Ξ− (Ξ+ + Ξ−)

)−1

=
(
|Q|
2π3

)−3

ζ−2 2
F+ F− (F+ + F−)

, (6.25)

where we have used (6.21). By contrast, the square of the curvature induced by the
cosmological constant, (6.24), is:

|µ|4 e−4A =
81 ζ2 |Q|

2π3

2F+ F−
F+ + F−

, (6.26)

using (5.39).

6.3.3 Regions of parametric control

To suppress α′ corrections, we should parametrically suppress (6.25), (6.26) while also satis-
fying (6.22). Rewriting ζ|Q| = ε1 and |Q|−3ζ−2 = ε2, we see that near-stack corrections can

25One might hope that these corrections are also suppressed when the Riemann components are small, but

not all of these corrections are known, even at leading order, so more detailed estimates may be misguided.
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be controlled by taking ε1 � 1, while curvature corrections can be controlled by taking ε2 to
be well below some fiducial curvature scale. The curvature (6.26) is then suppressed by ε41 ε2.
However, in this limit |Q| = 1/(ε21ε2), so the D3-brane charge must be taken to be large.

In a physical solution, we expect that the D3-brane charge is determined by the world-
volume dynamics on the seven-brane stack, and is not a free parameter. If we add D3-branes
near the tip, the 3-7 strings become light and introduce light matter into the worldvolume
theory, precluding gaugino condensation. Thus, |Q| is not a free parameter, and we must
look elsewhere for parametric control of the curvature. Comparing (6.22) and (6.25), we
see that control may be possible for F± � 1 with ζ scaled appropriately (e.g. ζ ∝ F−4/3).
For constant dilaton solutions, (6.8) gives

F+ + F− =
r2
?

r2
+
r2

r2
?

+ 2 sgn(Q) . (6.27)

Thus, F± � 1 requires r � r? or r � r?.

Solutions in the region r � r? are unlikely to be physical for the following reason.
Referring to figure 2, we see that such a solution can only be regular for r < rs where
rs ≤ r?. The large-distance singularity at r = rs is not obviously due to localized sources,
and should be removed by compactification, rather than by curvature corrections. However,
corrections to the near-stack limit (the first step towards compactification) decrease with
increasing r in the region r < r?, since Ξ+ + Ξ− has a single minimum at r = r?.

Thus, we restrict our attention to the r � r? case. For simplicity, we consider the case
where Ξ+ and Ξ− cross at some large radius req � r?. Thus, at req, F+ = F− ≈ r2

eq/(2 r
2
?).

In this limit, one can show that the curvature terms are indeed suppressed. At leading
order in r? � req, r, we find

r2A′′(r)→
6 r2 r2

eq − r4
eq

2 (2 r2 − r2
eq)2

, rA′(r)→
−r2

eq

2 (2 r2 − r2
eq)

, r2B′′(r)→ −3 r2
?

r2
, rB′(r)→ r2

?

r2
,

(6.28)
so the derivatives are of order one or smaller for r & req, and the size of the Riemann
components is determined by the prefactor (6.25). Thus, our previous arguments apply,
and we conclude that both curvature and near-stack corrections can be suppressed at
r ∼ req.26 Depending on the parameters, near-stack corrections will become important at
some rfar > req and curvature corrections at some rnear < req. Near r = req both types of
corrections are small, but ϕ ∼ π/2 and the solution cannot be described by perturbations
about a type B background.

As illustrated by this example, the solutions we have obtained describe physics inac-
cessible to previous approaches. We stress that the above is not a complete classification
of regions of parametric control. We leave further exploration of the large parameter space
of solutions, including solutions where the dilaton runs, to a future work.

26For req � r? the singularity occurs at req/
√

2, but the ten-dimensional distance between req and the

singularity is proportional to re−2B−A, and will be large in string units when the curvatures are small.
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7 Towards the physics of the solutions

Our choice to study four D7-branes atop an O7-plane on a rigid four-cycle was strongly
motivated by the fact that the corresponding seven-brane gauge theory confines in the
infrared, but our analysis so far has exclusively involved ten-dimensional supergravity,
without any input of gauge theory physics. We have obtained a family of exact noncompact
solutions parameterized by a number of integration constants, but we expect that some of
these constants are actually fixed by a proper inclusion of nonperturbative source terms
localized on the seven-branes (cf. [9, 10]), or by matching to the seven-brane gauge theory.

In this section we present a preliminary analysis of the relation between the solu-
tions obtained in section 5 and the dynamics of the four-dimensional gauge theory on
seven-branes in the P2 cone. Potential applications of our results to the ten-dimensional
description of KKLT vacua and geometric transitions for seven-branes are also discussed.

7.1 Gaugino condensation in supergravity

Let us start by briefly discussing the gauge theory supported on the seven-brane stack
wrapping the rigid holomorphic P2. An important subtlety in obtaining the worldvolume
gauge theory is the following. Since P2 is not spin, wrapping D7-branes on it gives rise to
global anomaly [5, 6], whose cancellation requires a nontrivial gauge bundle that will break
SO(8) down to (at most) U(4). While it is not clear to us how the anomaly constraint is
modified in the presence of the O7-plane, if we assume that the anomaly does persist, the
resulting gauge group need not be asymptotically free.

In this work we will assume that the seven-brane gauge group generates a gaugino
condensate in the infrared, postponing a proper treatment of the Freed-Witten anomaly
to future work. Fortunately, the methods we have developed apply equally well to the
Calabi-Yau cone over P1×P1. The gauge theory analysis there is simpler, because P1×P1

is spin, but the supergravity analysis becomes slightly more involved than in the P2 cone.

Let us now turn to gaugino condensation. Denoting the dynamical scale by Λ and the
dual Coxeter number of the nonabelian group by c2 (not to be confused with the integration
constant c2), we have

〈λλ〉 ∼ αc2Λ3 , (7.1)

where αc2 is a c2-th root of unity. The nonperturbative superpotential is also proportional
to the gaugino bilinear 〈λλ〉. Recall that the U(1)R symmetry that acts on the gauginos is
anomalous at the quantum level:

λ→ eiθλ , τYM → τYM +
c2

π
θ . (7.2)

The exact symmetry is thus reduced to a discrete Z2c2 . Moreover, this is spontaneously
broken to Z2 by (7.1), leading to c2 inequivalent vacua.

– 35 –



J
H
E
P
0
5
(
2
0
1
1
)
1
1
0

7.1.1 Gaugino condensation and IASD flux

To connect the gauge theory dynamics to our supergravity solution,27 we use the results
of [9], which showed that gaugino condensation on D7-branes sources imaginary anti-self-
dual (IASD) flux in the space surrounding the branes. Using the classical DBI coupling
between D7-brane gauginos λ and bulk fluxes [41],

L ⊃ a

α′2

∫
P2

√
g G3 · Ω λ̄λ̄ + c.c. , (7.3)

the flux equation of motion, expanded around a background containing exclusively imagi-
nary self-dual fluxes, was found to be [9]

d
[
e4A (?G3 − iG3)

]
=

4iaκ2
10

gsα′2
d
[
λλ Ω̄ δ(P2)

]
. (7.4)

Here ? is the six-dimensional Hodge star, δ(P2) is a delta-function localizing on P2, and a

is a dimensionless constant.
The nonzero expectation value (7.1) provides a localized source for flux in ten dimen-

sions via (7.4), and the resulting flux is IASD with Hodge type (1, 2). Compelling evidence
for this proposal comes from the fact that for D7-branes wrapping a given four-cycle in
a local geometry, the G1,2 flux background induced by the coupling (7.4) precisely en-
codes the superpotential of the four-dimensional gauge theory: a D3-brane probing the
flux background sourced by (7.4) experiences the superpotential derived upon reduction to
four dimensions [9].

The analysis of [9] was performed in an expansion around type B backgrounds [8],
but focused on the theory of probe D3-branes28 and consistently neglected perturbations
to the metric and dilaton: such perturbations are clearly present as a consequence of the
IASD flux sourced by the gaugino condensate, but do not contribute to the D3-brane scalar
potential until third order. However, it was natural to expect that the full solution of all
the equations of motion would unite the proposals of [10], in which the background is a
generalized complex geometry, and of [9], in which G1,2 flux plays the central role. In this
work we have exhibited a solution with dynamic SU(2) structure that crucially involves
G1,2 flux, thereby illuminating the relationship between [10] and [9].

7.1.2 R-symmetry breaking and domain walls

Having explained the relation between three-form fluxes and gaugino condensation, let
us discuss how the pattern of R-symmetry breaking described above may be encoded in
the supergravity solution. Referring to table 1, we see that R(Θ) = +2 and R(Ω2) = 0.
Comparing (5.7), (5.4) with the geometric action of U(1)ψ (appropriately normalized as

27A precise matching between supergravity and gauge theory requires having a smooth solution, which

we lack at present. Our discussion here will be qualitative, and limited to showing that the family of

supersymmetric solutions found above has the required ingredients to encode gaugino condensation.
28Consideration of more general D-brane probes [42, 43] of our solutions is likely to lead to substantial

physical insight, but is beyond the scope of the present work.
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in section 2.2), we see that c1 and eiξ must carry R-charges +2 and −2 respectively. This
suggests that, in a four-dimensional off-shell formulation (where the equations of motion of
the effective action reproduce the ten-dimensional equations), some combination of c1 and
eiξ becomes a fluctuating space-time field with nonvanishing R-charge, whose expectation
value spontaneously breaks the exact R-symmetry to Z2.

Gaugino condensation has a similar off-shell description in terms of the glueball su-
perfield S = − 1

32π2 trWαW
α and the Veneziano-Yankielowicz superpotential [44]. On-shell

this field acquires a nonzero expectation value proportional to (7.1) and reproduces the
nonperturbative superpotential. It is natural to conjecture that the combination of c1 and
eiξ mentioned above is dual to S; then the on-shell superpotential (4.46), (4.47) would have
to agree with the gaugino-condensate superpotential.29

We expect the appearance of domain walls due to the spontaneous breaking of the
exact R-symmetry Z2c2 → Z2; these should correspond to wrapped branes in the gravity
solution. We now argue that D3-branes wrapping a loop inside the S5/Z3 have the right
properties to be domain walls in our solution.

The S5/Z3 has fundamental group Z3 generated by a loop where ψ runs from 0→ 2π.
However, due to the involution, a D3-brane wrapping from 0→ π is permitted, where the
two ends are identified under the involution ψ → ψ+π. This corresponds to the generator
of the Z6 fundamental group of the horizon in the downstairs geometry. We compute
the tension of the domain wall by evaluating the DBI action for the brane in the probe
approximation:

T(wall) = µ3

∮
ds(6) e

2A = µ3 π r e
2(A−B) = µ3 π |c1|

|Ξ+ + Ξ−|
2 |Ξ+ Ξ−|1/2

≥ µ3 π |c1| , (7.5)

where the bound is saturated if and only if Ξ+ = Ξ− at the location of the domain wall.
Thus, the tension is minimized at a ϕ = π/2 locus, in which case the wall is a half-
BPS state [43]. The analysis of section 6.3 describes one example where the supergravity
approximation is valid at such a locus.

The Z6 fundamental group in the downstairs geometry implies that the number of
domain walls of this type is conserved modulo six. Thus, the gauge theory has six vacua,
consistent with gaugino condensation in SO(8) pure super Yang-Mills. We anticipate that
these vacua are related by exact R-symmetry transformations. The BPS domain wall
tension (7.5) can then be used to infer the precise value of the superpotential vev. We
postpone a more detailed study of these domain walls and other wrapped branes to a
future work.

Finally, we recall that the extension of the gravity solution to the full P2 cone using the
ansatz of section 3 reveals that the space-time becomes AdS, as explained in section 5.3.
We have not obtained a satisfactory interpretation of this restriction from the viewpoint
of the gauge theory.

7.2 Applications

Our solution has a range of interesting applications, two of which we now describe.
29For D5-branes or D6-branes in the conifold this matching was obtained in the large N duality of [45, 46].
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7.2.1 Ten-dimensional consistency of KKLT vacua

One application would be to study the ten-dimensional consistency conditions for KKLT
vacua. As vacua of the four-dimensional effective theory, these solutions are reasonably well
understood, but are known to violate constraints that emerge from the ten-dimensional type
IIB supergravity equations of motion with classical sources. Specifically, from the external
Einstein equations and the five-form Bianchi identity, one obtains

∇2Φ− =
1
4
e8A |?G3 − iG3|2 +R4 + e−4A |∇Φ−|2 + Slocal , (7.6)

where R4 is the four-dimensional Ricci scalar, and [8]

Slocal = 2κ2
10 e

2A
(e2A

4
Tmm −

e−2A

4
Tµµ − µ3ρ3

)
local

, (7.7)

where Tmn and Tµν are the internal and external components of the ten-dimensional stress-
energy tensor TMN (with indices raised by the unwarped metrics gmn and hµν , respectively),
and ρ3 is the D3-brane charge density. An anti-D3-brane at position y0 provides a positive
localized source,

SD3
local = 4κ2

10 µ3 e
8A δ6(y − y0) , (7.8)

whereas D3-branes, O3-planes, and O7-planes, like all other local sources allowed in the
solutions of [8], provide a vanishing contribution to Slocal. Then, noting that the integral
of the left-hand side of (7.6) over a compact space vanishes, one learns that a de Sitter
solution is possible only if a suitable localized negative contribution to the right-hand side
is present. We will denote such a contribution as ρ−(y).

We emphasize that negative tension alone does not suffice to produce a contribution to
ρ−, as is evident from the fact that O3-planes and O7-planes do not contribute. Localized
classical sources that do contribute to ρ− include anti-O3-planes and O5-planes [8], but
to our knowledge such objects have not played a role in the construction of consistent de
Sitter vacua in the framework of [1].

A natural guess is that the four-dimensional nonperturbative effects that led to stability
in the effective theory — i.e., gaugino condensation on D7-branes — will provide new
sources in the ten-dimensional equations of motion. In fact, the stress tensor contribution
given in (7.6) arises from varying the classical action for bosonic fields with respect to the
metric. The stress tensor by definition involves the variation of the complete action, but
fermionic expectation values vanish in classical vacua, and the corresponding contributions
may then be omitted. However, in the solutions we have considered, the fermion bilinear
λλ plays an essential role, and contributions proportional to 〈λλ〉 should be retained.

Specifically, to incorporate the effects of gaugino condensation one should also vary
the coupling (7.3) with respect to the metric. The result is a new contribution to (7.7) that
is negative and proportional to |〈λλ〉|2. We speculate that this negative contribution could
suffice to establish that KKLT vacua can be lifted to consistent ten-dimensional solutions,
but we leave a thorough investigation of this point for the future.
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7.2.2 On del Pezzo transitions with seven-branes

A more speculative application of our result is to a geometric transition for seven-branes.
It would be interesting to understand when a divisor wrapped by seven-branes can be
contracted in such a way that the resulting singularity can be deformed. The only divisors
in a Calabi-Yau threefold that admit birational contraction followed by deformation to a
new Calabi-Yau are the del Pezzo surfaces P1 × P1 and dPk, k ≥ 2 [47, 48].30 (The del
Pezzo surfaces dP0 = P2 and dP1 can be contracted, but the resulting singular varieties
cannot be deformed to smooth Calabi-Yau threefolds.)

We would like to understand when del Pezzo transitions can occur for divisors wrapped
by seven-branes, motivated by the rich physics of geometric transitions involving D5-branes.
The role of gaugino condensation in the conventional D5-brane geometric transition [45, 46]
is well understood, and strongly suggests that for seven-branes it is also important to
characterize the effect of gaugino condensation in the geometry. Our result prepares the
tools for such an analysis, but exploring a seven-brane geometric transition in detail is
beyond the scope of this work. We also observe that in any case where a del Pezzo transition
with seven-branes is possible, so that a smooth geometry is obtained after the deformation,
the resulting absence of a local source for ρ− as described in section 7.2.1 presents an
obstacle to obtaining consistent de Sitter vacua.

8 Conclusions

We have obtained a family of exact, noncompact, supersymmetric solutions of type IIB
supergravity with dynamic SU(2) structure. The core of each solution is a stack of four
D7-branes atop an O7-plane on a flat non-compact four-cycle. We argued that this solution
describes the region near a small patch of a compact, rigid four-cycle, within which we
have assumed rotational symmetry. We gave strong evidence for this claim by presenting
an ansatz for a corresponding configuration of four D7-branes and an O7-plane wrapping
the P2 base of the simplest del Pezzo cone, and showing that in the near-stack limit our flat
ansatz is recovered. Decompactifying the four-cycle destroys information about induced
charges and sends the seven-brane gauge coupling to zero, while drastically simplifying the
equations of motion. By comparing the flat-space solution to the P2 cone configuration,
we were able to interpret certain aspects of our solution as arising from seven-brane gauge
dynamics or from induced D3-brane charge and tension.

For compact, rigid four-cycles, the seven-brane gauge theory undergoes gaugino con-
densation at low energies. In this work we have identified a class of exact solutions as can-
didates for the ten-dimensional backreaction of seven-brane gaugino condensation. Our ap-
proach was strictly ten-dimensional and did not incorporate nonperturbative source terms,
in contrast to, but not in contradiction with, [10],31 which proposed that gaugino conden-

30Strictly speaking, del Pezzo surfaces are the only possible exceptional divisors for ‘primitive’ contrac-

tions, from which more general contractions can be constructed [48].
31See e.g. [11–13] for earlier connections between gaugino condensation and generalized complex geometry,

and [9] for evidence that gaugino couplings to flux source ten-dimensional deformations.
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sation provides a localized source term that induces a deformation to a generalized complex
geometry. It would be valuable to understand the relationship between these approaches.

Although the seven-brane charge necessarily vanishes in our solutions, the three-brane
charge and tension induced on seven-branes wrapping P2 can be negative, so that at
short distances one expects singular behavior typical of orientifolds. We indeed find a
singularity with divergent warp factor near the seven-branes. It would be very interesting
to understand if this singularity is ultimately removed by strong gauge dynamics on the
seven-branes.

Stacks of seven-branes wrapping rigid four-cycles are ubiquitous in type IIB compact-
ifications, and understanding their effects in ten-dimensional supergravity is an important
step toward characterizing the resulting four-dimensional effective theories. In particular,
decoupling arguments analogous to [49] that invoke extradimensional locality require a ten-
dimensional description, and the effective theory of D3-branes is most efficiently described
by geometrizing seven-brane gauge dynamics [9], as we have done here. The configura-
tion we have presented is arguably the simplest nontrivial example of the backreaction
of seven-brane nonperturbative effects, because the seven-brane charges vanish and the
four-cycle is highly symmetric. Our approach can be extended to configurations with less
symmetry, such as seven-branes wrapping the base of a suitable del Pezzo cone; we argued
that analogous solutions exist for the P2 cone. It would be very interesting to construct
additional examples and explore their implications, both as windows into the dynamics
of the seven-brane gauge theory, and as descriptions of local regions of stabilized type
IIB compactifications.
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A Equations of motion for the near-stack ansatz

We now present the general equations of motion for the warped ansatz (3.10), (3.11), and
then specialize to the near-stack limit. Rewriting the covariant action (4.27) in terms of a
four-dimensional Lagrangian density,

S =
∫

d4 x
√
−hL , (A.1)

where L is given by an integral over the internal space, and applying the warped
ansatz (3.10), (3.11),32 we find the vacuum Lagrangian:

L =
1

2κ2
10

∫
d6y
√
g

[
R+

1
2
e−8A(∇α)2 − 8(∇A)2 + 4Λe−4A − 1

2

(
1
τ2

2

|dτ |2 + e4A|G3|2
)]

− i

4κ2
10

∫
αG3 ∧G?3 , (A.2)

where Λ = R(4)/4 is the four-dimensional cosmological constant, τ2 = Im τ , contractions
are made using the unwarped metric gmn, and G3 = D−A2, so that D−G3 = 0. The
corresponding equations of motion are:

d
(
e−8A ?6 dα

)
=− i

2
G3 ∧G?3 , ∇2A =

1
8
e4A|G3|2+

1
4
e−8A(∇α)2+Λe−4A , (A.3)

D−
(
e4A ?6 G

?
3

)
=−idα ∧G?3 , D ?6

(
1
τ2

dτ̄
)

=
i

2
e4AG?3 ∧ ?6G

?
3 , (A.4)

Rmn=8∇mA∇nA−
1
2
e−8A∇mα∇nα+

1
4τ2

2

[∇mτ∇nτ̄ + c.c.] +
1
2
e4A T̂mn − Λe−4Agmn ,

(A.5)
where

T̂mn =
1
4

(GmpqḠnpq + ḠmpqGnpq)−
1
12
ḠpqrGpqrδ

m
n . (A.6)

To work out the Einstein equations, we compute T̂ in a complex basis. It is straightforward
to check that T̂µν = 0 if µ and ν are both holomorphic indices; this is a consequence of the
primitivity of G3. Of the mixed, T̂ µ̄ν components, all except T̂ z̄z = (T̂ zz̄ )? must vanish by
symmetry, and we find

T̂zz = 4 e−4C z̄

z

[
g3,0ḡ2,1 + g1,2ḡ0,3

]
. (A.7)

After a straightforward computation, we find the Ricci components

Rzz = − z̄
z

[
C ′′ + 4B′C ′ + (C ′)2 − 1

r
C ′
]
, Rzz̄ =

[
B′′ − C ′′ + 1

r
(B′ − C ′)− (C ′)2

]
,

Ruiūj̄ = −1
2
e4B+2C

[
C ′′ +

1
r
C ′ + 4(C ′)2

]
δij̄ . (A.8)

Using these formulae, one can write down the Einstein equations in terms of B and C.
Applying the remaining equations of motion to the ansatz of section 3.1 in like fashion, we

32As usual, there are some surmountable subtleties relating to the self-duality of F̃5.
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find four real second order equations of motion for A, α, B, and C, along with one complex
second order equation of motion for τ , four real first order equations of motion for the gp,q,
and one complex constraint coming from the r, ψ component of the Einstein equations.

The α and A equations of motion are

1
r

d
dr

(
re4(C−2A)α′

)
= 4

3∑
p=0

(−1)p|gp,3−p|2 , (A.9)

1
r

d
dr
(
re4CA′

)
= e4A

3∑
p=0

|gp,3−p|2 +
1
4
e4(C−2A)(α′)2 + Λe4(C−B−A) , (A.10)

where primes denote derivatives with respect to r. The τ equation of motion is

1
rτ2

d
dr
(
re4Cτ ′

)
+

i

τ2
2

e4C(τ ′)2 = −8ie4A
(
g3,0g0,3 + g2,1g1,2

)
. (A.11)

The G3 equations of motion and Bianchi identities are

1
r
√
τ2

d
dr
[
r
√
τ2e

4Ag3,0
]
+
iτ ′

2τ2
e4A
[
g3,0 + ḡ1,2

]
=
e4A

r
g3,0 +

1
2

(e4A − α)′
[
g3,0− g2,1

]
, (A.12)

1
r
√
τ2

d
dr
[
r
√
τ2e

4Ag2,1
]
+
iτ ′

2τ2
e4A
[
g2,1 + ḡ0,3

]
=−e

4A

r
g2,1 − 1

2
(e4A + α)′

[
g3,0− g2,1

]
, (A.13)

1
r
√
τ2

d
dr
[
r
√
τ2e

4Ag1,2
]
+
iτ ′

2τ2
e4A
[
ḡ3,0 + g1,2

]
=−e

4A

r
g1,2 − 1

2
(e4A − α)′

[
g0,3− g1,2

]
, (A.14)

1
r
√
τ2

d
dr
[
r
√
τ2e

4Ag0,3
]
+
iτ ′

2τ2
e4A
[
ḡ2,1 + g0,3

]
=
e4A

r
g0,3 +

1
2

(e4A + α)′
[
g0,3− g1,2

]
. (A.15)

The B and C equations of motion are

C ′′ +
1
r
C ′ + 4(C ′)2 = Λe−4(A+B) , (A.16)

B′′ +
1
r
B′ + 3(C ′)2 = 2(A′)2 − 1

8
e−8A(α′)2 +

1
8τ2

2

|τ ′|2 +
1
2
e−4(A+B)Λ , (A.17)

and the constraint takes the form

C ′
[

2
r

+ 3C ′ − 4B′
]

= 2(A′)2 − 1
8
e−8A(α′)2 +

1
8τ2

2

|τ ′|2

+2e4(A−C) (g3,0 ḡ2,1 + g1,2 ḡ0,3) + e−4(A+B)Λ . (A.18)
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