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Abstract

AdS2/CFT1 correspondence predicts that the logarithm of a ZZN twisted index over states

carrying a fixed set of charges grows as 1/N times the entropy of the black hole carrying the

same set of charges. In this paper we verify this explicitly by calculating the microscopic ZZN

twisted index for a class of states in the CHL models. This demonstrates that black holes carry

more information about the microstates than just the total degeneracy.
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1 Introduction and Summary

CHL models [1, 2] in four dimensions with N = 4 supersymmetry have proved to be a rich

arena for studying the physics of black holes [3–9]. On the one hand they have as much su-

persymmetry and hence as much control as the toroidally compactified heterotic string theory.

On the other hand they have different effective actions beyond the supergravity approximation

and hence make different predictions for the entropy of BPS black holes beyond the leading

order result of [10,11]. Thus they provide us with more data points at which we can compare

the macroscopic and microscopic predictions for the black hole entropy. This comparison has

been remarkably successful at the level of four derivative corrections to the effective action,

reproducing complicated non-trivial functional dependence of the entropy on the charges on

both sides.1 Indeed, most of the results on black holes in heterotic string theory on T 6 [6,16–24]

have now been generalized to the case of CHL models.

In this paper we shall make use of the CHL model to explore another aspect of black holes.

Based on AdS2/CFT1 correspondence [25,26] it was argued in [27] that if a theory has a ZZN

symmetry that cannot be regarded as part of a U(1) gauge transformation, and if we pick a

1We should add a note of caution that this comparison requires us to make assumption of certain non-
renormalization results which have not been proven. In particular it assumes that at the level of four derivative
terms the Gauss-Bonnet terms (or their supersymmetric completion given in [12–15]) in the action are sufficient
to calculate the correction to the black hole entropy. The analysis in this paper does not require us to make
any such assumption.
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black hole carrying U(1) charges which are invariant under this ZZN transformation, then the

logarithm of the trace of the ZZN generator over the microstates of the black hole grows as 1/N

times the entropy of the black hole.2 This can be made more concrete for BPS black holes in

supersymmetric string theories by working with protected helicity trace index. In the context

of N = 4 supersymmetric string theories in four dimensions the relevant twisted index is the

6th helicity trace index [27, 30, 31]:

Bg
6(~q) =

1

6!
Tr~q

{
(−1)2h(2h)6 g

}
, (1.1)

where the trace is taken over all states carrying a fixed set of charges ~q, h is the third component

of the angular momentum of the state in its rest frame, and g is the generator of a ZZN

symmetry which leaves ~q invariant. This index receives contribution from 1/4 BPS states in

this theory which describe large black holes with near horizon AdS2 × S2 geometry. In this

case the analysis of [27] applies and tells us that

|Bg
6(~q)| ∼ exp[SBH(~q)/N ] , (1.2)

where SBH(~q) is the entropy of an extremal black hole carrying charge ~q. We shall not review

the arguments of [27] here; but the central idea is that in computing the contribution to (1.2)

from the horizon of the black hole the leading saddle point corresponding to the AdS2 × S2

near horizon geometry does not contribute. However a ZZN orbifold of AdS2 × S2 [26, 32, 33],

whose asymptotic geometry coincides with that of the original near horizon geometry of the

black hole, contributes and gives the answer exp[SBH/N ] in the semiclassical limit.

While (1.2) follows almost trivially from the AdS2/CFT1 correspondence, it is quite striking

from the point of view of the microscopic theory. For large black holes the right hand side

of (1.2) is much smaller than the untwisted helicity trace index carrying the same charges,

since the latter is given by exp[SBH(~q)]. What this tells us is that in a given charge sector the

microstates of different g eigenvalues come in almost equal numbers so that the sum weighted

by g is much smaller than the total number of states. This was explicitly verified in [27] by

deriving the microscopic formula for this twisted index in toroidally compactified heterotic and

type II string theories and then studying their asymptotic behaviour.3

2For a ZZN group that can be regarded as a subgroup of a spontaneously broken U(1) gauge group, the
possibility of hair modes containing information about the ZZN quantum numbers was explored in [28, 29]. In
contrast the ZZN groups we discuss here cannot be regarded as a subgroup of a spontaneously broken U(1)
symmetry. Also our goal here is quite different from the one of [28, 29].

3Even though type II string theory on T 6 has N = 8 supersymmetry, only an N = 4 subgroup of this
commutes with g. Thus effectively we can analyze it in the same way as in an N = 4 supersymmetric theory.
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Given the unusual nature of this macroscopic prediction, it is important to test this in as

many examples as possible. In this paper we shall verify this in the context of CHL models.

The construction of the CHL models that we shall analyze proceeds as follows. We begin

with type IIB string theory on M× S1 × S̃1 where M is either K3 or T 4 and go to a special

subspace of the moduli space of M where the theory has a geometric ZZM × ZZN symmetry

that commutes with 16 supersymmetry generators of the theory. An extensive list of possible

symmetries of this type can be found in [34, 35]. Note also that a ZMN group with M and

N relatively prime can be considered as a ZM × ZN group for the purpose of our analysis.

Let us denote by gM and gN the generators of ZZM and ZZN respectively. We now take an

orbifold of this theory by a symmetry that involves 1/M unit of translation along the circle

S1 accompanied by the transformation gM . This gives a theory with N = 4 supersymmetry

in four dimensions and the ZZN group generated by gN is a symmetry of this theory. We now

consider a gN invariant charge vector ~q in this theory and define the index

d(~q) = −
1

6!
Tr~q

(
e2πih(2h)6gN

)
, (1.3)

where the trace is taken over all states carrying the charge ~q. Eq.(1.2) now translates to

|d(~q)| ∼ exp[SBH(~q)/N ] , (1.4)

for large charges. Our goal will be to verify this by explicit computation of d(~q) in the micro-

scopic theory.

Since the explicit counting of states involves technical details, we shall take this opportunity

to summarize the results of our analysis. We use a convention in which the coordinate radius of

the original circle S1 before orbifolding is 2πM so that the orbifold action involves translation

by 2π along S1 accompanied by gM . In this convention the minimum amount of momentum

along S1 is 1/M . We focus on states carrying one unit of KK monopole charge associated with

the circle S̃1, one unit of D5-brane charge wrapped on M× S1, Q1 units of D1-brane charge

wrapped on S1, left-moving momentum n/M along S1 and J units of momentum along S̃1,

and define

Q2 = 2n/M, P 2 = 2Q1, Q.P = J . (1.5)

In this case our result of d(~q) is given by

d(~q) =
1

M
(−1)Q.P+1

∫

C
dρdσdve−πi(MρQ2+σP 2/M+2vQ.P ) 1

Φ̃(ρ, σ, v)
. (1.6)
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Here C is a three real dimensional subspace of the three complex dimensional space labelled

by (ρ = ρ1 + iρ2, σ = σ1 + iσ2, v = v1 + iv2) given by

ρ2 = M1, σ2 = M2, v2 = M3,

0 ≤ ρ1 ≤ 1, 0 ≤ σ1 ≤ M, 0 ≤ v1 ≤ 1 , (1.7)

M1, M2, M3 being large but fixed positive numbers satisfying

M1M2 > M2
3 . (1.8)

The function Φ̃(ρ, σ, v) is a modular form of a subgroup of Sp(2, ZZ), given by

Φ̃(ρ, σ, v) = e2πi(α̃ρ+γ̃σ+β̃v)

1∏

b=0

N−1∏

r=0

M−1∏

r′=0

∏

k∈zz+ r′
M

,l∈zz,j∈2zz+b

k,l≥0,j<0 for k=l=0

[
1− e2πir/N e2πi(kσ+lρ+jv)

]a

a ≡
N−1∑

s=0

M−1∑

s′=0

e−2πi(s′l/M+rs/N)c
(0,s;r′,s′)
b (4kl − j2) , (1.9)

where the coefficients c
(r,s;r′,s′)
b are defined via the equation:

1∑

b=0

∑

j∈2zz+b,n∈zz/MN

c
(r,s;r′,s′)
b (4n− j2)e2πi(nτ+jz)

=
1

MN
TrRR;gr

′

M grN

(
gs

′

MgsN(−1)JL+JRe2πi(τL0−τ̄ L̄0)e2πiJLz
)
. (1.10)

The trace is taken over all the gr
′

MgrN twisted RR sector states in the (4,4) superconformal

CFT2 with target space M. L0 and L̄0 are the left and right-moving Virasoro generators and

JL/2 and JR/2 are the generators of the U(1)L × U(1)R subgroup of the SU(2)L × SU(2)R

R-symmetry group of this CFT2. An algorithm for explicitly computing the right hand side of

(1.10) has been outlined in appendix A. The coefficients α̃, β̃, γ̃ are given by

α̃ =
1

24M
Q0,0 −

1

2M

M−1∑

s′=1

Q0,s′
e−2πis′/M

(1− e−2πis′/M )2
,

β̃ = 1

γ̃ =
1

24M
χ(M) =

1

24M
Q0,0 , (1.11)

where

Qr′,s′ = MN
(
c
(0,0;r′,s′)
0 (0) + 2c

(0,0;r′,s′)
1 (−1)

)
. (1.12)
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Eqs. (1.10), (1.11) define all the quantities which appear in the definition of Φ̃. The only

ambiguity that remains in computing the right hand side of (1.6) is the choice of the integration

contour encoded in the choice of (M1,M2,M3). As is well known by now, this ambiguity is

related to the phenomenon of wall crossing [36–39]. Different choices of M1, M2 and M3 give

the value of d(~q) for different values of the asymptotic moduli. However the ambiguity in the

value of d(~q) that it introduces is sufficiently small so as not to affect our analysis, and hence

we shall ignore it in our subsequent discussion.

Given the result (1.6) for d(~q) we can find its behaviour for large Q2, P 2 and Q.P by

standard method [3, 6, 16, 17]. The result is that d(~q) behaves as

d(~q) ∼ exp
[
π
√

Q2P 2 − (Q.P )2/N
]
. (1.13)

Since in this limit a black hole of charge ~q has entropy [10, 11]

SBH(~q) ≃ π
√

Q2P 2 − (Q.P )2 , (1.14)

we see that the microscopic result (1.13) is in perfect agreement with the macroscopic prediction

(1.4).

Finally we would like to remark that even though we have presented our analysis for the

index Tr((−1)2h(2h)6gN), we can repeat the analysis with gN replaced by (gN)
b for any integer

b. In this case the role of N is played by the order of (gN)
b, and in all the formulæ we simply

have to replace gN by (gN)
b. This in turn allows us to compute the index Tr((−1)2h(2h)6) for

states carrying a definite gN eigenvalue e2πia/N using the combination

1

N

N−1∑

b=0

e−2πiab/N Tr((−1)2h(2h)6(gN)
b) . (1.15)

Thus our result can also be interpreted as the agreement between the macroscopic and the

microscopic results for the helicity trace index over states carrying a definite gN charge.

2 The counting

The counting of states of the D1-D5-KK monopole system proceeds as in [6–8, 40]. We take

the circle S1 to be large compared to the size of M and regard the world-volume theory as a

1+1 dimensional field theory living on S1. Denoting by d(Q1, n, J) the twisted index (1.3) of

states carrying charge labeled by (Q1, n, J) in the convention of §1, we define

Z(ρ, σ, v) =
∑

Q1,n,J

e2πi(Q1σ/M+nρ+vJ)(−1)Jd(Q1, n, J) . (2.1)
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Proving (1.6) is now equivalent to proving that Z = −1/Φ̃.

The twisted partition function Z is given by the product of three twisted partition functions,

– that of the excitations living on the KK monopole, that of the dynamics describing the overall

motion of the D1-D5 system in the background of the KK monopole and that of the motion

of the D1-brane along the D5-brane. For each system we must keep the right-movers in

their ground state and excite the left-movers in order to preserve supersymmetry.4 Since the

fermion zero modes associated with the broken supersymmetries are automatically removed

while computing the helicity trace (which is B6 in this case since the system breaks 12 of the

16 supersymmetries), we shall ignore their contribution during the rest of our analysis.

We begin by analyzing the partition function of the KK monopole. The massless bosonic

modes on the world-volume of the KK monopole arise from the motion along the three trans-

verse directions and the components of the p-form fields along the product of the harmonic

(p− 2)-forms of M and the harmonic 2-form of the Taub-NUT space. The massless fermions

are the goldstinos associated with the supersymmetries broken by the Kaluza-Klein monopole.

In general one can show that the left-moving bosons and fermions are in one to one correspon-

dence with the even and odd degree harmonic forms on M [40]. Furthermore their (gM , gN)

quantum numbers are also given by the (gM , gN) eigenvalues of the harmonic forms on M.

Since the harmonic (p, q) forms on M are in one to one correspondence with the RR sector

ground states in the supersymmetric σ-model with target space M carrying L0 = L̄0 = 0,

JL = (p− 1), JR = (q− 1), it follows from (1.10) that the number of left-moving bosons minus

the number of left-moving fermions on the KK monopole world-volume, carrying gN quantum

number e2πir/N and gM quantum number e2πik
′/M , is given by [8, 40]

1

MN

N−1∑

s=0

M−1∑

s′=0

e−2πirs/Ne−2πik′s′/MTrRR;I

[
(−1)JL+JR gs

′

MgsN δL0,0 δL̄0,0

]

=

N−1∑

s=0

M−1∑

s′=0

e−2πirs/Ne−2πik′s′/M
(
c
(0,s;0,s′)
0 (0) + 2c

(0,s;0,s′)
1 (−1)

)
. (2.2)

In arriving at (2.2) we have used the fact that c
(r,s;r′,s′)
b (u) = 0 for u < −1. Now consider a mode

carrying gM eigenvalue e2πik
′/M and left-moving momentum l/M along S1. The requirement

of invariance under the simultaneous action of gM and 2π translation along S1 gives us the

requirement that l = k′ mod M . Furthermore the contribution to the twisted index from these

4Here and elsewhere left-moving modes will refer to modes carrying momentum along the negative S1

direction. Thus left-moving momentum n will indicate momentum −n along S1.
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states will be weighted by the gN eigenvalue e2πir/N . Thus the net contribution to the partition

function from these modes is given by

ZKK = e−2πiα̃ρ
N−1∏

r=0

∞∏

l=1

(
1− e2πir/Ne2πilρ

)−∑N−1
s=0

∑M−1
s′=0

e−2πirs/N e−2πils′/M

(
c
(0,s;0,s′)
0 (0)+2c

(0,s;0,s′)
1 (−1)

)

.

(2.3)

Here the term e−2πiα̃ρ reflects the effect of the momentum carried by the ground state of the

Kaluza-Klein monopole. The analysis of [8, 40] gives

α̃ =
1

24M
Q0,0 −

1

2M

M−1∑

s′=1

Q0,s′
e−2πis′/M

(1− e−2πis′/M)2
,

Qr′,s′ ≡ MN
(
c
(0,0;r′,s′)
0 (0) + 2c

(0,0;r′,s′)
1 (−1)

)
. (2.4)

Next we turn to the dynamics of the overall motion of the D1-D5 system in the KK

monopole background. The dynamics in the transverse direction is independent of whether we

are working with K3 or T 4. Furthermore these modes do not carry any gN or gM quantum

numbers; thus the contribution from these modes to the partition function is universal. The

result is [8, 40]

−e−2πiv
(
1− e−2πiv

)−2

∏

l∈Mzz
l>0

{(1− e2πilρ)4(1− e2πilρ+2πiv)−2(1− e2πilρ−2πiv)−2} . (2.5)

The first line represents the contribution from the zero mode dynamics that binds the D1-D5

system to the KK monopole [6, 41, 42], and the second line represents the contribution from

the oscillators. The last two terms in the second line of (2.5) represent the contribution from

the four left-moving bosonic modes representing transverse oscillation of the D1-D5 system

whereas the first factor in the same line represents contribution from the left-moving fermionic

modes.5 In arriving at (2.5) one needs to use the fact that in the presence of the KK monopole

background, the momentum along S̃1 appears as the angular momentum 2JL for the D1-D5

5These left-moving bosonic and fermionic modes, as well as those which contribute to (2.7), are paired by
the unbroken superysymmetry transformations on the D1-D5 world volume in flat space-time which commute
with ZZM × ZZN , are charged under the SU(2)L subgroup of the transverse rotation group, and act on the
left-movers. Eventually when we place this system in the background of KK monopole this supersymmetry
is broken since in the full system there is no supersymmetry acting on the left-movers. However this is still
useful for determining the quantum numbers of the fermions from the known quantum numbers of the bosonic
modes [8, 40].
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system where JL is the generator of the U(1)L ⊂ SU(2)L subgroup of the rotation group in

transverse space [43]. The v dependence of (2.5) then follows from the fact that the bosonic

modes, transforming as a vector of the transverse rotation group SU(2)L × SU(2)R, carry

JL = ±1 while the fermionic modes are neutral under U(1)L as a consequence of footnote 5.

For M = T 4 we also have four additional bosonic modes arising from the Wilson lines on

the D5-brane along T 4 and four additional fermionic modes. In order to find the contribution

to the partition function from these modes we need to know the action of gM and gN on

these modes. If z1 and z2 denote the complex coordinates on T 4 then in order to preserve

supersymmetry both gM and gN must act as equal and opposite rotation of z1 and z2, possibly

accompanied by shifts. We shall assume for definiteness that gM and gN induce respectively

2π/M and 2π/N rotations on these coordinates:

gM : (dz1, dz2) →
(
e2πi/Mdz1, e

−2πi/Mdz2
)
,

gN : (dz1, dz2) →
(
e2πi/Ndz1, e

−2πi/Ndz2
)
. (2.6)

(2.6) represents the action of gM and gN on the Wilson line variables. Furthermore the Wilson

lines are neutral under the rotation group in the transverse space and hence carry JL = 0.

The result of footnote 5 now tells us that the additional fermionic modes on the D1D5 system,

which arise for M = T 4, transform in the same way under gM and gN , and carry JL = ±1

uncorrelated with their (gM , gN) quantum numbers [8, 40]. Thus the contribution from these

additional modes to the twisted partition function is given by

∏

l∈Mzz+1
l>0

(
1− e2πi/Ne2πilρ

)−2 ∏

l∈Mzz−1
l>0

(
1− e−2πi/Ne2πilρ

)−2 ∏

l∈Mzz+1
l>0

(
1− e2πi/Ne2πilρ+2πiv

)

∏

l∈Mzz+1
l>0

(
1− e2πi/Ne2πilρ−2πiv

) ∏

l∈Mzz−1
l>0

(
1− e−2πi/Ne2πilρ+2πiv

) ∏

l∈Mzz−1
l>0

(
1− e−2πi/Ne2πilρ−2πiv

)
.

(2.7)

The first two factors come from the bosonic modes and the last four factors arise from the

fermionic modes whose contribution have not already been included in (2.5). The only new

ingredient in this formula compared to that in [8, 40] is the insertion of the factors of e±2πi/N ,

– these arise from the insertion of gN into the trace.

The product of (2.5) and (2.7) can be written in a compact form using the coefficients

c
(0,s;0,s′)
1 (−1). It follows from its definition, and the identification of the RR sector ground

states in the SCFT with target space M carrying (JL, JR) = (p− 1, q − 1) with the harmonic

9



(p, q) forms on M, that MNc
(0,s;0,s′)
1 (−1) represents trace over the (0, q) forms on M weighted

by (−1)qgsNg
s′

M [8, 40]. On K3 the only (0, q) forms are (0, 0) forms and (0, 2) forms both of

which are neutral under gN and gM , while on T 4 we also have a pair of (0, 1) forms dz1 and

dz2 which we have chosen to carry (gN , gM) eigenvalues (e±2πi/N , e±2πi/M). This gives

c
(0,s;0,s′)
1 (−1) =

2

MN
for M = K3 ,

=
1

MN

(
2− e2πis/Ne2πis

′/M − e−2πis/Ne−2πis′/M
)

for M = T 4 . (2.8)

Using this we can express the total contribution to the partition function from the overall

motion of the D1-D5 system in the Taub-NUT space, given by (2.5) for M = K3 and the

product of (2.5) and (2.7) for M = T 4, as

ZCM = − e−2πiv

∞∏

l=1

N−1∏

r=0

(1− e2πir/N e2πilρ)2
∑N−1

s=0

∑M−1
s′=0

e−2πils′/Me−2πirs/Nc
(0,s;0,s′)
1 (−1)

∞∏

l=1

N−1∏

r=0

(1− e2πir/N e2πilρ+2πiv)−
∑N−1

s=0

∑M−1
s′=0

e−2πils′/Me−2πirs/N c
(0,s;0,s′)
1 (−1)

∞∏

l=0

N−1∏

r=0

(1− e2πir/N e2πilρ−2πiv)−
∑N−1

s=0

∑M−1
s′=0

e−2πils′/Me−2πirs/N c
(0,s;0,s′)
1 (−1) . (2.9)

Note that the (1− e−2πiv)−2 factor has been absorbed into the l = 0 term in the last term.

Finally let us turn to the contribution to the partition function from the motion of the D1-

branes along the D5-branes. First we consider a single D1-brane wrapped w times along S1,

and count the number of states n(w, j, l; r, k′) of the system carrying left-moving momentum

l/M along S1, gM eigenvalue e2πik
′/M , gN eigenvalue e2πir/N and S̃1 momentum j. Since the

boundary condition on various fields are twisted by gM under 2π translation along S1, the

CFT on a D1-brane wrapped w times along S1 satisfies boundary condition twisted by (gM)w.

Furthermore since the effective length of the D1-brane is now 2πw, a momentum l/M along

S1 will appear as lw/M units of momentum in the CFT living on the D1-brane. It now follows

from (1.10) that [8, 40]

n(w, j, l; r, k′) =

N−1∑

s=0

M−1∑

s′=0

e−2πirs/Ne−2πik′s′/Mc
(0,s;r′,s′)
b (4lw/M − j2) ,

b = j mod 2, r′ = w mod M . (2.10)

The requirement that we only keep the modes which are invariant under the transformation

gM accompanied by 2π translation along S1 forces the constraint k′ = l mod M . It is now
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straightforward to evaluate the contribution to the gN twisted partition function from multiple

states of this type, carrying different (w, l, j) [44]:

ZD1D5 = e−2πiγ̃σ

N−1∏

r=0

1∏

b=0

∏

w∈zz,l∈zz,j∈2zz+b
w>0,l≥0

(
1− e2πir/Ne2πi(σw/M+ρl+vj)

)−n(w,j,l;r,l)
. (2.11)

where

γ̃ =
{
1/M for M = K3
0 for M = T 4

. (2.12)

The e−2πiγ̃σ in (2.11) accounts for the fact that the actual number of D1-branes required to

produce a total D1-brane charge Q1 in the background of a D5-brane is given by Q1 + 1 for

M = K3 and Q1 for M = T 4. Multiplying (2.3), (2.9) and (2.11) we get the total partition

function of the system:

Z(ρ, σ, v) = ZKK ZCM ZD1D5 = −1/Φ̃(ρ, σ, v) , (2.13)

where

Φ̃(ρ, σ, v) = e2πi(α̃ρ+γ̃σ+β̃v)
1∏

b=0

N−1∏

r=0

M−1∏

r′=0

∏

k∈zz+ r′
M

,l∈zz,j∈2zz+b

k,l≥0,j<0 for k=l=0

[
1− e2πir/N e2πi(kσ+lρ+jv)

]a

a ≡
N−1∑

s=0

M−1∑

s′=0

e−2πi(s′l/M+rs/N)c
(0,s;r′,s′)
b (4kl − j2) , (2.14)

with α̃, β̃, γ̃ defined in (1.11). Note that the k = 0 term in this product gives the result for

ZKKZCM .

3 Asymptotic Growth

We now study the growth of the index for large Q2, P 2 and Q.P . This can be done by

standard procedure described in [3, 6, 16, 17]. We deform the three dimensional contour of

integration over (ρ, σ, v) to small imaginary values of (ρ, σ, v). During this deformation we pick

up contribution from the residues at various poles, given by the zeroes of Φ̃, which give the

leading contribution to the index, – the contribution from the final contour can be shown to

be subleading compared to the contribution from the residues at the poles [40]. Thus we need
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to first determine the location of the zeroes of Φ̃. This has been done in appendix C where it

is shown that Φ̃ has double zeroes on the subspaces:

n2(ρσ − v2)−m1ρ+ n1σ +m2 + jv = 0 , (3.1)

for values of (m1, n1, m2, n2, j) satisfying

m1n1 +m2n2 +
j2

4
=

1

4
,

m1 ∈ M ZZ, m2 ∈ ZZ, n2 ∈ N ZZ, n1 ∈ ZZ, j ∈ 2 ZZ + 1 . (3.2)

Now the analysis of [3, 6, 16, 17] tells us that for large Q2, P 2, Q.P the contribution from the

residue at the pole (3.1) of 1/Φ̃ grows as

exp
(
π
√

Q2P 2 − (Q.P )2/|n2|
)

for |n2| > 0 . (3.3)

On the other hand the poles at n2 = 0 are responsible for wall crossing and their contribution

grows much slower than (3.3) [36–39]. Thus the leading contribution comes from the pole at

(3.1) for the minimum non-zero value of |n2|. Eq.(3.2) shows that this is N . Thus the index

grows as

exp
(
π
√
Q2P 2 − (Q.P )2/N

)
. (3.4)

Since for this charge the black hole entropy SBH is given by π
√
Q2P 2 − (Q.P )2 [10, 11], (3.4)

is in precise agreement with the macroscopic prediction (1.2).

4 Conclusion

It is widely believed that since string theory provides us with a consistent quantum theory

of gravity, black holes in string theory do not lead to a loss of information. If so, the black

hole must represent an ensemble of microstates and the black hole entropy must have an in-

terpretation as the logarithm of the degeneracy of microstates. Furthermore quantum string

theory around a black hole background must contain all possible information about the mi-

crostates. It is therefore important to learn how we can extract information about the black

hole microstates by studying quantum string theory around the black hole background.

The results of [27] and this paper provide a small step in this direction. In these papers

we discuss how to extract information about one specific feature of the black hole microstates,

namely distribution of the ZZN charges among the microstates. Quantum string theory around

12



the near horizon background leads to a specific algorithm for extracting this information. Our

analysis shows that in the limit of large charges the results of the macroscopic analysis are

in exact agreement with the microscopic results in a wide class of models where the latter is

computable. While using the rules of AdS2/CFT1 correspondence we can in principle compute

the ensemble average of more general operators on the black hole side, in the absence of non-

renormalization results it is not clear how we might compare this with the microscopic results.

Acknowledgment: I wish to thank Nabamita Banerjee, Atish Dabholkar, Joao Gomes and

Sameer Murthy for useful discussions. This work was supported in part by the JC Bose

fellowship of the Department of Science and Technology, India and by the Blaise Pascal Chair,

France.

Note added: I have been informed by Suresh Govandarajan that the modular forms of

subgroups of Sp(2, ZZ) which appear here have also been constructed independently in [45,46].

A Explicit computation of c
(r,s;r′,s′)
b

In this appendix we shall describe the strategy for explicit computation of the right hand side

of (1.10)

F (r,s;r′,s′)(τ, z) ≡
1

MN
TrRR;gr

′

MgrN

(
gs

′

MgsN(−1)JL+JRe2πi(τL0−τ̄ L̄0)e2πiJLz
)

=

1∑

b=0

∑

j∈2zz+b,n∈zz/MN

c
(r,s;r′,s′)
b (4n− j2)e2πi(nτ+jz) , (A.1)

and hence of c
(r,s;r′,s′)
b . First of all F (0,0;0,0) is simply 1/MN times the elliptic genus of M and

is given by [47]

F (0,0;0,0)(τ, z) = 0 for M = T 4

=
8

MN

[
ϑ2(τ, z)

2

ϑ2(τ, 0)2
+

ϑ3(τ, z)
2

ϑ3(τ, 0)2
+

ϑ4(τ, z)
2

ϑ4(τ, 0)2

]
for M = K3 , (A.2)

where ϑi are the Jacobi theta functions. For non-vanishing r and/or r′ the contribution to the

right hand side of (A.1), coming from twisted sectors localized at the fixed points of gr
′

MgrN , can

be computed by taking the size of K3 to be large so that the geometry near the fixed points is

nearly flat. In this case the σ model near the fixed point can be regarded as the orbifold of a

free field theory, and the action of grNg
r′

M near the fixed point may be represented by a rotation
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by some angle 2πθ in one plane and rotation by an opposite angle −2πθ in the orthogonal

plane. The action of gs
′

MgsN near such a fixed point can be of two types, – either it takes the

fixed point to a different fixed point or it leaves the fixed point fixed. In the former case the

contribution to the trace in (A.1) vanishes, whereas in the latter case the action of gs
′

MgsN near

the fixed point can be represented by a rotation by 2πφ in one plane and a rotation by −2πφ

in the orthogonal plane. This gives a contribution to (A.1) of the form

1

MN

∞∏

n=1

{(
1− qn+θ−1e2πiφ

)−2 (
1− qn−θe−2πiφ

)−2 (
1− qn+θ−1e2πiφe2πiz

)

(
1− qn+θ−1e2πiφe−2πiz

) (
1− qn−θe−2πiφe2πiz

) (
1− qn−θe−2πiφe−2πiz

)

=
1

MN

ϑ1(τ, z + θτ + φ)ϑ1(τ,−z + θτ + φ)

ϑ1(τ, θτ + φ)2
, (A.3)

where q ≡ e2πiτ . The full contribution to F (r,s;r′,s′)(τ, z) is obtained by summing over the

contribution from all the fixed points of grNg
r′

M which are also fixed by gs
′

MgsN . Finally F (0,s;0,s′)

can be computed using the modular transformation rules [47]

F (r,s;r′,s′)

(
aτ + b

cτ + d
,

z

cτ + d

)
= exp

[
2πi

cz2

cτ + d

]
F (cs+ar,ds+br;cs′+ar′,ds′+br′)(τ, z) . (A.4)

This gives a way to compute F (r,s;r′,s′)(τ, z) using purely geometric data, namely the fixed

points of the different elements of ZZM × ZZN and the action of the elements of ZZM × ZZN

near the fixed points. Note that F (r,s;r′,s′)(τ, z) constructed from (A.3), (A.4) is invariant under

z → −z. This is a consequence of the SU(2)L R-symmetry of the underlying conformal field

theory that allows us to change the sign of JL.

B Threshold Integral Representation of Φ̃

In this appendix we shall describe a threshold integral representation of Φ̃. For this we define

h
(r,s;r′,s′)
b (τ) =

∑

k∈ 1
MN

zz− b2

4

c
(r,s;r′,s′)
b (4k)e2πikτ , (B.1)

Ω =

(
ρ v
v σ

)
, (B.2)

and

1

2
p2R =

1

4 det ImΩ
| −m1ρ+m2 + n1σ + n2(σρ− v2) + jv|2,

1

2
p2L =

1

2
p2R +m1n1 +m2n2 +

1

4
j2 . (B.3)
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We now consider the ‘threshold integral’

Ĩ(ρ, σ, v) =
N−1∑

r,s=0

M−1∑

r′,s′=0

1∑

b=0

Ĩr,s;r′,s′;b , (B.4)

where

Ĩr,s;r′,s′;b =

∫

F

d2τ

τ2

[ ∑

m1∈zz,m2∈zz/N,n2∈Nzz−r

n1∈zz+ r′

M
,j∈2zz+b

qp
2
L/2q̄p

2
R/2e2πim1s′/Me−2πim2sh

(r,s;r′,s′)
b (τ)

−δb,0δr,0δr′,0c
(0,s;0,s′)
0 (0)

]
, (B.5)

with

q ≡ e2πiτ . (B.6)

F denotes the fundamental region of SL(2, ZZ) in the upper half plane. The subtraction terms

proportional to c
(0,s;0,s′)
0 (0) have been chosen so that the integrand vanishes faster than 1/τ2 in

the τ → i∞ limit, rendering the integral finite.

Following the manipulations outlined in [4] following earlier work of [48–50] one can show

that

Ĩ(ρ, σ, v) = −2 ln[(det Im Ω)k̃]− 2 ln Φ̃(ρ, σ, v)− 2 ln Φ̌(ρ̄, σ̄, v̄) + constant (B.7)

where Φ̃ has been defined in (1.9) and6

Φ̌(ρ̄, σ̄, v̄) = e−2πi(α̃ρ̄+γ̃σ̄+β̃v̄)

1∏

b=0

N−1∏

r=0

M−1∏

r′=0

∏

k∈zz+ r′
M

,l∈zz,j∈2zz+b

k,l≥0,j<0 for k=l=0

[
1− e−2πir/N e−2πi(kσ̄+lρ̄+jv̄)

]a

a ≡
N−1∑

s=0

M−1∑

s′=0

e−2πi(s′l/M+rs/N)c
(0,s;r′,s′)
b (4kl − j2) , (B.8)

k̃ =
1

2

N−1∑

s=0

M−1∑

s′=0

c
(0,s;0,s′)
0 (0) . (B.9)

Since the detailed analysis of a specific integral of this type has been carried out in [4], we

shall only describe the basic steps leading to (B.7), focussing on the main differences between

the general case and the special case analyzed in [4].

6Since the exponent a in (1.9), (B.8) is a real number (in fact an integer) we have Φ̌(ρ̄, σ̄, v̄) = Φ̃(ρ, σ, v).
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1. We first carry out Poisson resummation over m1 and m2 to express Ĩr,s;r′,s′;b as

∫

F

d2τ

τ 22

Y

ρ2

[
N

∑

k1∈zz+ s′
M

,k2∈Nzz−s

n1∈zz+ r′
M

,n2∈Nzz−r,j∈2zz+b

h
(r,s;r′,s′)
b (τ)eG(~n,

~k,j) − δb,0δr,0δr′,0c
(0,s;0,s′)
0 (0)

]
(B.10)

where

G(~n,~k, j) = −
πY

ρ22τ2
|A|2 − 2πiσdetA+

πj

ρ2
(vÃ − v̄A)−

πn2

ρ2
(v2Ã − v̄2A)

+
2πiv22
ρ22

(n1 + n2ρ̄)A+ 2πiτ
j2

4
, (B.11)

Y ≡ ρ2σ2 − v22 , A ≡

(
n1 k1
n2 k2

)
, A ≡ (1, ρ)A

(
τ
1

)
, Ã ≡ (1, ρ̄)A

(
τ
1

)
.

(B.12)

2. Using (B.4), (B.10) and performing the sum over j using (A.1), (B.1) we get

Ĩ =

∫

F

d2τ

τ 22

[
N

∑

k1,n1∈zzM ,k2,n2∈zz

J (A, τ)−
N−1∑

s=0

M−1∑

s′=0

c
(0,s;0,s′)
0 (0)

]
, (B.13)

where

J (A, τ) =
Y

ρ2
exp

(
−

πY

ρ22τ2
|A|2 − 2πiσdetA

−
πn2

ρ2
(v2Ã − v̄2A) +

2πiv22
ρ22

(n1 + n2ρ̄)A

)
F (r,s;r′,s′)

(
τ,−i

vÃ − v̄A

2 ρ2

)

r = −n2mod N, s = −k2mod N, r′ = Mn1 mod M, s′ = Mk1mod M .

(B.14)

3. Using (A.4) one can show that

J

(
A

(
a b
c d

)
, τ

)
= J

(
A,

aτ + b

cτ + d

)
,

(
a b
c d

)
∈ SL(2, ZZ) . (B.15)

Under the map τ → (aτ+b)/(cτ+d) the fundamental region F of SL(2, ZZ) gets mapped

to its image. With the help of (B.15) we can restrict the sum over the matrix A to the

following ranges [48]:
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(a) Non-degenerate orbit:

A =

(
k m
0 p

)
, k,m ∈

ZZ

M
, p ∈ ZZ, p 6= 0, 0 ≤ m < k , (B.16)

with the integration over τ ranging over two copies of the upper half plane.

(b) Degenerate orbit:

A =

(
0 m
0 p

)
, m ∈

ZZ

M
, p ∈ ZZ, (m, p) 6= (0, 0) , (B.17)

with the integration over τ ranging over the strip −1
2
≤ τ1 ≤

1
2
, τ2 > 0.

(c) Zero orbit:

A =

(
0 0
0 0

)
, (B.18)

with the integration over τ ranging over the fundamental domain F .

We shall briefly discuss the computation of the contribution from the non-degenerate

orbits. The analysis of the contribution from the other orbits follows [4].

4. The steps needed for evaluating the contribution from the non-degenerate orbits are as

follows:

(a) We first expand F (r,s;r′,s′)(τ, z) using (A.1) and change integration variable from τ1

to τ ′1:

τ ′1 = τ1 +
m

k
+

p

k
ρ1 . (B.19)

Since for non-degenerate orbit the τ1 integration ranges from −∞ to ∞, τ ′1 integral

will also range from −∞ to ∞.

(b) After this change of variables the m dependence of the integral becomes simple.

The explicit dependence on m takes the form e−2πimn/k, n and j being the integers

appearing in the expansion (A.1). There is also an implicit dependence onm through

c
(r,s;r′,s′)
b (4n − j2) since s′ = Mm mod M due to (B.14). The sum over m can be

performed by expanding the summation range of m to 0 ≤ m < Mk in steps of

1/M , at the cost of having to divide the sum by a factor of M . We then sum over

all values of m of the form s′

M
+ integer for fixed s′ and finally sum over integral s′
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in the range 0 ≤ s′ ≤ (M − 1). For fixed s′ the sum takes the form

∑

m∈zz+ s′

M
,0≤m<Mk−1

e−2πimn/k = Mk e−2πins′/(Mk)
∑

l∈zz
δn,kl = Mk

∑

l∈zz
e−2πils′/M δn,kl .

(B.20)

The sum over n can now be performed using the Kronecker delta.

(c) Next we carry out the τ ′1 integral which is Gaussian and the τ2 integral using the

identity ∫ ∞

0

du

u3/2
e−au−bu−1

=

√
π

b
e−2

√
ab . (B.21)

At this stage the p dependent part of the summand takes the form

1

|p|
exp {−2πiσkp− 2πk|p|σ2 − 2πkpσ2 − 2πilpρ1 − 2πl|p|ρ2 − 2πijpv1 − 2πj|p|v2} .

(B.22)

(d) Finally we perform the sum over p by breaking it into contribution from p > 0 and

p < 0 terms, making a change of variables p → −p in the p < 0 terms, and using

the identity

∑

p∈Nzz+s,p>0

1

p
e2πiαp =

1

N

N−1∑

r=0

∑

p∈zz,p>0

e2πir(p−s)/N 1

p
e2πiαp

= −
1

N

N−1∑

r=0

e−2πirs/N ln(1− e2πir/Ne2πiα) . (B.23)

5. At the end of this manipulation we get the contribution from the non-degenerate orbits

to be

−2
N−1∑

r,s=0

M−1∑

r′,s′=0

1∑

b=0

∑

k∈zz+ r′

M
,l∈zz,j∈2zz+b,k>0,l≥0

e−2πirs/Ne−2πils′/Mc
(0,s;r′,s′)
b (4kl − j2)

{
ln
[
1− e2πir/Ne2πi(kσ+lρ+jv)

]
+ ln

[
1− e−2πir/Ne−2πi(kσ̄+lρ̄+jv̄)

]}
+ constant .

(B.24)

One can recognize (B.24) as the contribution from −2 ln Φ̃(ρ, σ, v) − 2 ln Φ̌(ρ̄, σ̄, v̄) except for

the k = 0 terms and the overall multiplicative factors in the product representation (1.9) of

Φ̃ and (B.8) of Φ̌. By carefully analyzing the contribution from the degenerate and the zero

orbits one recovers the complete set of terms on the left hand side of (B.7).
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C Zeroes of Φ̃

In this appendix we shall determine the locations of the zeroes of the function Φ̃. From (B.7)

it follows that at the locations of the zeroes and poles of Φ̃ we have logarithmic divergences

in Ĩ. Thus we can determine the locations of the zeroes and poles of Φ̃ by determining the

singularities of Ĩ. Since the integrand in Ĩ is finite for finite τ , and in its original form given

in (B.4), (B.5) the integration over τ runs over the fundamental domain of SL(2, ZZ), the

only possible source of divergence is from the region of large τ2. This requires that the powers

of q(≡ e2πiτ ) and q̄ be equal so that the τ1 integral for large τ2 does not vanish, and non-

positive so that the τ2 integral diverges. Since the only dependence on q̄ is through the q̄p
2
R/2

term, and since p2R is positive semi-definite, this requires p2R to vanish. Furthermore p2L is also

positive semidefinite (although it is not directly apparent from its definition), and hence the

only possible way to produce a divergence is to get a non-positive power of q from the expansion

of h
(r,s;r′,s′)
b (τ).7 Such terms are quite restricted, and one finds that the possible divergences in

Ĩ arise at [6, 40]

n2(ρσ − v2)−m1ρ+ n1σ +m2 + jv = 0 , (C.1)

for values of (m1, n1, m2, n2, j) satisfying

m1n1 +m2n2 +
j2

4
=

1

4
− β, 0 ≤ β <

1

4
,

m1 ∈ ZZ, m2 ∈ ZZ/N, n2 ∈ ZZ, n1 ∈ ZZ/M, j ∈ 2 ZZ + 1 . (C.2)

At this point p2R vanishes and p2L/2 = (1/4)− β so that the qp
2
L/2q̄p

2
R/2 factor becomes purely

a function of τ and not of τ̄ . This has to be cancelled against a similar τ dependent factor

in hb so that the τ1 integral is finite and we get a logarithmically divergent τ2 integral. The

coefficient of the divergent term can be easily determined from (B.5), (B.1) and (B.7) and we

get, near this point,8

Φ̃(ρ, σ, v) ∼
(
n2(ρσ − v2)−m1ρ+ n1σ +m2 + jv

)∑M−1
s′=0

∑N−1
s=0 e2πim1s

′/Me−2πim2sc
(r,s;r′,s′)
1 (−1+4β)

,

r = −n2 mod N, r′ = Mn1 mod M . (C.3)

7There is a further restriction coming from the fact that for p2
L
= p2

R
= 0 all the mi’s, ni’s and j must

vanish. The divergence in the τ2 integral from such a term is removed by the subtraction term in (B.5). Thus
a divergent τ2 integral requires p2

L
to be strictly positive. This explains the strict inequality β < 1

4
in (C.2).

8We need to account for the fact that the terms in the expression for Ĩ with (mi, ni, j) and (−mi,−ni,−j)
give identical results.
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Let us first focus on the r = r′ = 0 terms, ı.e. configurations with n2 ∈ N ZZ, n1 ∈ ZZ. In

this case it follows from (C.2) that β must vanish and so the right hand side of (C.3) involves

c
(0,s;0,s′)
1 (−1). Using (2.8) we now get, for M = K3,

M−1∑

s′=0

N−1∑

s=0

e2πim1s′/Me−2πim2sc
(0,s;0,s′)
1 (−1) =

{
2 for m1 ∈ M ZZ, m2 ∈ ZZ
0 otherwise ,

(C.4)

and for M = T 4,

M−1∑

s′=0

N−1∑

s=0

e2πim1s′/Me−2πim2sc
(0,s;0,s′)
1 (−1) =

{
2 for m1 ∈ M ZZ, m2 ∈ ZZ
−1 for m1 ∈ M ZZ± 1, m2 ∈ ZZ∓ 1

N

0 otherwise .

(C.5)

In either case the exponent is positive, producing zeroes of Φ̃, only form1 ∈ M ZZ andm2 ∈ ZZ.

Thus the net result is that the only zeroes of Φ̃ for r = r′ = 0 are of the form:

Φ̃(ρ, σ, v) ∼
(
n2(ρσ − v2)−m1ρ+ n1σ +m2 + jv

)2
,

m1 ∈ M ZZ, m2 ∈ ZZ, n1 ∈ ZZ, n2 ∈ N ZZ . (C.6)

Let us now analyze the contribution to the exponent in (C.3) when r and/or r′ is non-zero.

From the definition of the coefficients c
(r,s;r′,s′)
b given in (1.10) it follows that the exponent in

(C.3) can be interpreted as the number of states weighted by (−1)JL+JR in the sector twisted

by grNg
r′

M , and carrying gM eigenvalue e−2πim1/M , gN eigenvalue e2πim2 , JL = ±1, L0 = β and

L̄0 = 0. If gr
′

MgrN does not have a fixed point in M then this number is zero since by taking the

size of M to be sufficiently large we can ensure that there will be no twisted sector state with

L̄0 = 0. If gr
′

MgrN has fixed points in M, then we can compute this number by taking the size of

M to be large so that near the fixed points we can regard the space as almost flat, with grNg
r′

M

acting as rotation by some angle θ in one plane and by −θ in an orthogonal plane. Under such

rotations all the bosons and fermions in the sigma model with target space M are twisted and

hence there are no zero modes. Thus we have a unique ground state with (JL = JR = 0).

Even after we apply left-moving oscillators to create states with L0 = β, JL = ±1, the states

will continue to have JR = 0. Thus the weight factor (−1)JL+JR is always −1 for JL = ±1 and

hence the exponent of (C.3) is always negative. This shows that (C.3) never gives a zero of Φ̃

for r and/or r′ non-zero, and the only zeroes of Φ̃ are of the form given in (C.6).
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