134 research outputs found

    First insights into the ISM at z > 8 with JWST: Possible physical implications of a high [O iii] λ4363/[O iii] λ5007

    Get PDF
    We present a detailed analysis of the rest-frame optical emission line ratios for three spectroscopically confirmed galaxies at z > 7.5. The galaxies were identified in the James Webb Space Telescope (JWST) Early Release Observations field SMACS J0723.3 - 7327. By quantitatively comparing Balmer and oxygen line ratios of these galaxies with various low-redshift 'analogue' populations (e.g. Green Peas, Blueberries, etc.), we show that no single analogue population captures the diversity of line ratios of all three galaxies observed at z > 7.5. We find that S06355 at z = 7.67 and S10612 at z = 7.66 are similar to local Green Peas and Blueberries. In contrast, S04590 at z = 8.50 appears to be significantly different from the other two galaxies, most resembling extremely low-metallicity systems in the local Universe. Perhaps the most striking spectral feature in S04590 is the curiously high [O iii] λ4363/[O iii] λ5007 ratio (RO3) of 0.048 (or 0.055 when dust-corrected), implying either extremely high electron temperatures, >3 × 104 K, or gas densities >104 cm-3. Observed line ratios indicate that this galaxy is unlikely to host an AGN. Using photoionization modelling, we show that the inclusion of high-mass X-ray binaries or a high cosmic ray background in addition to a young, low-metallicity stellar population can provide the additional heating necessary to explain the observed high RO3 while remaining consistent with other observed line ratios. Our models represent a first step at accurately characterizing the dominant sources of photoionization and heating at very high redshifts, demonstrating that non-thermal processes may become important as we probe deeper into the Epoch of Reionization

    How well do computer-generated faces tap face expertise?

    Get PDF
    The use of computer-generated (CG) stimuli in face processing research is proliferating due to the ease with which faces can be generated, standardised and manipulated. However there has been surprisingly little research into whether CG faces are processed in the same way as photographs of real faces. The present study assessed how well CG faces tap face identity expertise by investigating whether two indicators of face expertise are reduced for CG faces when compared to face photographs. These indicators were accuracy for identification of own-race faces and the other-race effect (ORE)-the well-established finding that own-race faces are recognised more accurately than other-race faces. In Experiment 1 Caucasian and Asian participants completed a recognition memory task for own- and other-race real and CG faces. Overall accuracy for own-race faces was dramatically reduced for CG compared to real faces and the ORE was significantly and substantially attenuated for CG faces. Experiment 2 investigated perceptual discrimination for own- and other-race real and CG faces with Caucasian and Asian participants. Here again, accuracy for own-race faces was significantly reduced for CG compared to real faces. However the ORE was not affected by format. Together these results signal that CG faces of the type tested here do not fully tap face expertise. Technological advancement may, in the future, produce CG faces that are equivalent to real photographs. Until then caution is advised when interpreting results obtained using CG faces

    JWST NIRCam + NIRSpec: Interstellar medium and stellar populations of young galaxies with rising star formation and evolving gas reservoirs

    Get PDF
    We present an interstellar medium and stellar population analysis of three spectroscopically confirmed z > 7 galaxies in the Early Release Observations JWST/NIRCam and JWST/NIRSpec data of the SMACS J0723.3-7327 cluster. We use the Bayesian spectral energy distribution-fitting code PROSPECTOR with a flexible star formation history (SFH), a variable dust attenuation law, and a self-consistent model of nebular emission (continuum and emission lines). Importantly, we self-consistently fit both the emission line fluxes from JWST/NIRSpec and the broad-band photometry from JWST/NIRCam, taking into account slit-loss effects. We find that these three z=7.6-8.5 galaxies (M-* approximate to 10(8) M-circle dot) are young with rising SFHs and mass-weighted ages of 3-4 Myr, though we find indications for underlying older stellar populations. The inferred gas-phase metallicities broadly agree with the direct metallicity estimates from the auroral lines. The galaxy with the lowest gas-phase metallicity (Z(gas) = 0.06 Z(circle dot)) has a steeply rising SFH, is very compact ( <0.2 kpc), and has a high star formation rate surface density (Sigma(SFR) approximate to 22 M-circle dot yr(-1) kpc(-2)), consistent with rapid gas accretion. The two other objects with higher gas-phase metallicities show more complex multicomponent morphologies on kpc scales, indicating that their recent increase in star formation rate is driven by mergers or internal, gravitational instabilities. We discuss effects of assuming different SFH priors or only fitting the photometric data. Our analysis highlights the strength and importance of combining JWST imaging and spectroscopy for fully assessing the nature of galaxies at the earliest epochs

    The chemical enrichment in the early Universe as probed by JWST via direct metallicity measurements at z ∼ 8

    Get PDF
    We analyse the chemical properties of three z∼ 8 galaxies behind the galaxy cluster SMACS J0723.3-7327, observed as part of the Early Release Observations programme of the James Webb Space Telescope. Exploiting [O III]λ4363 auroral line detections in NIRSpec spectra, we robustly apply the direct Te method for the very first time at such high redshift, measuring metallicities ranging from extremely metal poor (12 + log(O/H)≈ 7) to about one-third solar. We also discuss the excitation properties of these sources, and compare them with local strong-line metallicity calibrations. We find that none of the considered diagnostics match simultaneously the observed relations between metallicity and strong-line ratios for the three sources, implying that a proper re-assessment of the calibrations may be needed at these redshifts. On the mass-metallicity plane, the two galaxies at z ∼ 7.6 (log(M∗/M☉) = 8.1, 8.7) have metallicities that are consistent with the extrapolation of the mass-metallicity relation at z∼2-3, while the least massive galaxy at z ∼ 8.5 (log(M∗/M☉) = 7.8) shows instead a significantly lower metallicity. The three galaxies show different level of offset relative to the Fundamental Metallicity Relation, with two of them (at z∼ 7.6) being marginally consistent, while the z∼ 8.5 source deviating significantly, being probably far from the smooth equilibrium between gas flows, star formation, and metal enrichment in place at later epochs

    The JWST Advanced Deep Extragalactic Survey: Discovery of an Extreme Galaxy Overdensity at z = 5.4 with JWST/NIRCam in GOODS-S

    Get PDF
    © 2024 The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/We report the discovery of an extreme galaxy overdensity at z=5.4z = 5.4 in the GOODS-S field using JWST/NIRCam imaging from JADES and JEMS alongside JWST/NIRCam wide field slitless spectroscopy from FRESCO. We identified potential members of the overdensity using HST+JWST photometry spanning λ=0.45.0 μm\lambda = 0.4-5.0\ \mu\mathrm{m}. These data provide accurate and well-constrained photometric redshifts down to m2930magm \approx 29-30\,\mathrm{mag}. We subsequently confirmed N=81N = 81 galaxies at 5.2<z<5.55.2 < z < 5.5 using JWST slitless spectroscopy over λ=3.95.0 μm\lambda = 3.9-5.0\ \mu\mathrm{m} through a targeted line search for Hα\mathrm{H} \alpha around the best-fit photometric redshift. We verified that N=42N = 42 of these galaxies reside in the field while N=39N = 39 galaxies reside in a density around 10\sim 10 times that of a random volume. Stellar populations for these galaxies were inferred from the photometry and used to construct the star-forming main sequence, where protocluster members appeared more massive and exhibited earlier star formation (and thus older stellar populations) when compared to their field galaxy counterparts. We estimate the total halo mass of this large-scale structure to be 12.6log10(Mhalo/M)12.812.6 \lesssim \mathrm{log}_{10} \left( M_{\mathrm{halo}}/M_{\odot} \right) \lesssim 12.8 using an empirical stellar mass to halo mass relation, which is likely an underestimate as a result of incompleteness. Our discovery demonstrates the power of JWST at constraining dark matter halo assembly and galaxy formation at very early cosmic times.Peer reviewe

    The JWST Advanced Deep Extragalactic Survey: Discovery of an Extreme Galaxy Overdensity at z=5.4z = 5.4 with JWST/NIRCam in GOODS-S

    Full text link
    We report the discovery of an extreme galaxy overdensity at z=5.4z = 5.4 in the GOODS-S field using JWST/NIRCam imaging from JADES and JEMS alongside JWST/NIRCam wide field slitless spectroscopy from FRESCO. We identified potential members of the overdensity using HST+JWST photometry spanning λ=0.45.0 μm\lambda = 0.4-5.0\ \mu\mathrm{m}. These data provide accurate and well-constrained photometric redshifts down to m2930magm \approx 29-30\,\mathrm{mag}. We subsequently confirmed N=81N = 81 galaxies at 5.2<z<5.55.2 < z < 5.5 using JWST slitless spectroscopy over λ=3.95.0 μm\lambda = 3.9-5.0\ \mu\mathrm{m} through a targeted line search for Hα\mathrm{H} \alpha around the best-fit photometric redshift. We verified that N=42N = 42 of these galaxies reside in the field while N=39N = 39 galaxies reside in a density around 10\sim 10 times that of a random volume. Stellar populations for these galaxies were inferred from the photometry and used to construct the star-forming main sequence, where protocluster members appeared more massive and exhibited earlier star formation (and thus older stellar populations) when compared to their field galaxy counterparts. We estimate the total halo mass of this large-scale structure to be 12.6log10(Mhalo/M)12.812.6 \lesssim \mathrm{log}_{10} \left( M_{\mathrm{halo}}/M_{\odot} \right) \lesssim 12.8 using an empirical stellar mass to halo mass relation, which is likely an underestimate as a result of incompleteness. Our discovery demonstrates the power of JWST at constraining dark matter halo assembly and galaxy formation at very early cosmic times.Comment: Resubmitted to ApJ based on reviewer report; main text has 15 pages, 6 figures and 1 table; appendix has 1 page, 2 figure sets, and 2 table

    MOONRISE: The Main MOONS GTO Extragalactic Survey

    Get PDF
    The MOONS instrument possesses an exceptional combination of large multiplexing, high sensitivity, broad simultaneous spectral coverage (from optical to near-infrared bands), large patrol area and high fibre density. These properties provide the unprecedented potential of enabling, for the very first time, SDSS-like surveys around Cosmic Noon (z~1-2.5), when the star formation rate in the Universe peaked. The high-quality spectra delivered by MOONS will sample the same nebular and stellar diagnostics observed in extensive surveys of local galaxies, providing an accurate and consistent description of the evolution of various physical properties of galaxies, and hence a solid test of different scenarios of galaxy formation and transformation. Most importantly, by spectroscopically identifying hundreds of thousands of galaxies at high redshift, the MOONS surveys will be capable of determining the environments in which primeval galaxies lived and will reveal how such environments affected galaxy evolution. In this article, we specifically focus on the main Guaranteed Time Observation (GTO) MOONS extragalactic survey, MOONRISE, by providing an overview of its scientific goals and observing strategy

    Discovery and properties of the earliest galaxies with confirmed distances

    Get PDF
    © 2023 Springer Nature Limited. This is the accepted manuscript version of an article which has been published in final form at 10.1038/s41550-023-01921-1Surveys with James Webb Space Telescope (JWST) have discovered candidate galaxies in the first 400 Myr of cosmic time. The properties of these distant galaxies provide initial conditions for understanding early galaxy formation and cosmic reionisation. Preliminary indications have suggested these candidate galaxies may be more massive and abundant than previously thought. However, without spectroscopic confirmation of their distances to constrain their intrinsic brightnesses, their inferred properties remain uncertain. Here we report on four galaxies located in the JWST Advanced Deep Extragalactic Survey (JADES) Near-Infrared Camera (NIRCam) imaging with photometric redshifts z1013z\sim10-13 subsequently confirmed by JADES JWST Near- Infrared Spectrograph (NIRSpec) observations. These galaxies include the first redshift z>12z>12 systems both discovered and spectroscopically confirmed by JWST. Using stellar population modelling, we find the galaxies typically contain a hundred million solar masses in stars, in stellar populations that are less than one hundred million years old. The moderate star formation rates and compact sizes suggest elevated star formation rate surface densities, a key indicator of their formation pathways. Taken together, these measurements show that the first galaxies contributing to cosmic reionisation formed rapidly and with intense internal radiation fields.Peer reviewe

    Western men and Eastern arts: The significance of Eastern martial arts disciplines in British men's narratives of masculinity

    Get PDF
    Previous Western sociological research on Eastern martial arts has identified a tension between ‘traditional’ Eastern forms of practice and ‘modernized’ Western methods of training and competition. In particular, the ‘sportization’ of Eastern styles, where combat-centred arts based upon moral philosophies have transformed more or less into competitive activities following Western models of rationalized sport, has been an important theme. However, it is also suggested that Eastern martial arts hold special significance in the West for their seemingly esoteric nature. In this regard, such martial arts are considered significant because they are not ‘sports’, but rather disciplines, with fairly different connotations for practitioners. Drawing on interview data, this paper explores how Western practitioners of Eastern martial arts articulate this difference, principally by examining the place of martial artistry in British men's narratives of masculinity. Comparing themselves favourably to assumed, typical visions of Western sporting masculinity, such men draw upon the imagined uniqueness of their martial arts to construct a sense of moral superiority over other men. In so doing, they contribute to a rejection of what they believe to be ‘mainstream’ sporting Western masculinity, thus indicating the role that ‘alternative’ visions of physical culture can play in men's active constructions of gender
    corecore