283 research outputs found
Associations between Blood Metabolic Profile at 7 Years Old and Eating Disorders in Adolescence: Findings from the Avon Longitudinal Study of Parents and Children
Eating disorders are severe illnesses characterized by both psychiatric and metabolic factors. We explored the prospective role of metabolic risk in eating disorders in a UK cohort (n = 2929 participants), measuring 158 metabolic traits in non-fasting EDTA-plasma by nuclear magnetic resonance. We associated metabolic markers at 7 years (exposure) with risk for anorexia nervosa and binge-eating disorder (outcomes) at 14, 16, and 18 years using logistic regression adjusted for maternal education, child's sex, age, body mass index, and calorie intake at 7 years. Elevated very low-density lipoproteins, triglycerides, apolipoprotein-B/A, and monounsaturated fatty acids ratio were associated with lower odds of anorexia nervosa at age 18, while elevated high-density lipoproteins, docosahexaenoic acid and polyunsaturated fatty acids ratio, and fatty acid unsaturation were associated with higher risk for anorexia nervosa at 18 years. Elevated linoleic acid and n-6 fatty acid ratios were associated with lower odds of binge-eating disorder at 16 years, while elevated saturated fatty acid ratio was associated with higher odds of binge-eating disorder. Most associations had large confidence intervals and showed, for anorexia nervosa, different directions across time points. Overall, our results show some evidence for a role of metabolic factors in eating disorders development in adolescence
Impact of FTO genotypes on BMI and weight in polycystic ovary syndrome : a systematic review and meta-analysis
Aims/hypothesis
FTO gene single nucleotide polymorphisms (SNPs) have been shown to be associated with obesity-related traits and type 2 diabetes. Several small studies have suggested a greater than expected effect of the FTO rs9939609 SNP on weight in polycystic ovary syndrome (PCOS). We therefore aimed to examine the impact of FTO genotype on BMI and weight in PCOS.
Methods
A systematic search of medical databases (PubMed, EMBASE and Cochrane CENTRAL) was conducted up to the end of April 2011. Seven studies describing eight distinct PCOS cohorts were retrieved; seven were genotyped for SNP rs9939609 and one for SNP rs1421085. The per allele effect on BMI and body weight increase was calculated and subjected to meta-analysis.
Results
A total of 2,548 women with PCOS were included in the study; 762 were TT homozygotes, 1,253 had an AT/CT genotype, and 533 were AA/CC homozygotes. Each additional copy of the effect allele (A/C) increased the BMI by a mean of 0.19 z score units (95% CI 0.13, 0.24; p = 2.26 × 10−11) and body weight by a mean of 0.20 z score units (95% CI 0.14, 0.26; p = 1.02 × 10−10). This translated into an approximately 3.3 kg/m2 increase in BMI and an approximately 9.6 kg gain in body weight between TT and AA/CC homozygotes. The association between FTO genotypes and BMI was stronger in the cohorts with PCOS than in the general female populations from large genome-wide association studies. Deviation from an additive genetic model was observed in heavier populations.
Conclusions/interpretation
The effect of FTO SNPs on obesity-related traits in PCOS seems to be more than two times greater than the effect found in large population-based studies. This suggests an interaction between FTO and the metabolic context or polygenic background of PCOS
Testing the role of predicted gene knockouts in human anthropometric trait variation
National Heart, Lung, and Blood Institute (NHLBI)
S.L. is funded by a Canadian Institutes of Health Research
Banting doctoral scholarship. G.L. is funded by Genome Canada
and Génome Québec; the Canada Research Chairs program; and
the Montreal Heart Institute Foundation. C.M.L. is supported by
Wellcome Trust (grant numbers 086596/Z/08/Z, 086596/Z/08/A);
and the Li Ka Shing Foundation. N.S. is funded by National Institutes
of Health (grant numbers HL088456, HL111089, HL116747).
The Mount Sinai BioMe Biobank Program is supported by the Andrea
and Charles Bronfman Philanthropies. GO ESP is supported
by NHLBI (RC2 HL-103010 to HeartGO, RC2 HL-102923 to LungGO,
RC2 HL-102924 to WHISP). The ESP exome sequencing was
performed through NHLBI (RC2 HL-102925 to BroadGO, RC2 HL-
102926 to SeattleGO). EGCUT work was supported through the
Estonian Genome Center of University of Tartu by the Targeted
Financing from the Estonian Ministry of Science and Education
(grant number SF0180142s08); the Development Fund of the University
of Tartu (grant number SP1GVARENG); the European Regional
Development Fund to the Centre of Excellence in
Genomics (EXCEGEN) [grant number 3.2.0304.11-0312]; and
through FP7 (grant number 313010). EGCUT were further supported
by the US National Institute of Health (grant number
R01DK075787). A.K.M. was supported by an American Diabetes
Association Mentor-Based Postdoctoral Fellowship (#7-12-MN-
02). The BioVU dataset used in the analyses described were obtained
from Vanderbilt University Medical Centers BioVU which
is supported by institutional funding and by the Vanderbilt CTSA
grant ULTR000445 from NCATS/NIH. Genome-wide genotyping
was funded by NIH grants RC2GM092618 from NIGMS/OD and
U01HG004603 from NHGRI/NIGMS. Funding to pay the Open Access
publication charges for this article was provided by a block
grant from Research Councils UK to the University of Cambridge
Non-Replication of Genome-Wide Based Associations between Common Variants in INSIG2 and PFKP and Obesity in Studies of 18,014 Danes
(rs17782313) as genetic risk factors. = 2,158) from Steno Diabetes Center. rs17782313 were observed. rs7566605 may influence the level of BMI in combination with the level of physical activity
Testing the role of predicted gene knockouts in human anthropometric trait variation
National Heart, Lung, and Blood Institute (NHLBI)
S.L. is funded by a Canadian Institutes of Health Research
Banting doctoral scholarship. G.L. is funded by Genome Canada
and Génome Québec; the Canada Research Chairs program; and
the Montreal Heart Institute Foundation. C.M.L. is supported by
Wellcome Trust (grant numbers 086596/Z/08/Z, 086596/Z/08/A);
and the Li Ka Shing Foundation. N.S. is funded by National Institutes
of Health (grant numbers HL088456, HL111089, HL116747).
The Mount Sinai BioMe Biobank Program is supported by the Andrea
and Charles Bronfman Philanthropies. GO ESP is supported
by NHLBI (RC2 HL-103010 to HeartGO, RC2 HL-102923 to LungGO,
RC2 HL-102924 to WHISP). The ESP exome sequencing was
performed through NHLBI (RC2 HL-102925 to BroadGO, RC2 HL-
102926 to SeattleGO). EGCUT work was supported through the
Estonian Genome Center of University of Tartu by the Targeted
Financing from the Estonian Ministry of Science and Education
(grant number SF0180142s08); the Development Fund of the University
of Tartu (grant number SP1GVARENG); the European Regional
Development Fund to the Centre of Excellence in
Genomics (EXCEGEN) [grant number 3.2.0304.11-0312]; and
through FP7 (grant number 313010). EGCUT were further supported
by the US National Institute of Health (grant number
R01DK075787). A.K.M. was supported by an American Diabetes
Association Mentor-Based Postdoctoral Fellowship (#7-12-MN-
02). The BioVU dataset used in the analyses described were obtained
from Vanderbilt University Medical Centers BioVU which
is supported by institutional funding and by the Vanderbilt CTSA
grant ULTR000445 from NCATS/NIH. Genome-wide genotyping
was funded by NIH grants RC2GM092618 from NIGMS/OD and
U01HG004603 from NHGRI/NIGMS. Funding to pay the Open Access
publication charges for this article was provided by a block
grant from Research Councils UK to the University of Cambridge
Testing the role of predicted gene knockouts in human anthropometric trait variation
National Heart, Lung, and Blood Institute (NHLBI)
S.L. is funded by a Canadian Institutes of Health Research
Banting doctoral scholarship. G.L. is funded by Genome Canada
and Génome Québec; the Canada Research Chairs program; and
the Montreal Heart Institute Foundation. C.M.L. is supported by
Wellcome Trust (grant numbers 086596/Z/08/Z, 086596/Z/08/A);
and the Li Ka Shing Foundation. N.S. is funded by National Institutes
of Health (grant numbers HL088456, HL111089, HL116747).
The Mount Sinai BioMe Biobank Program is supported by the Andrea
and Charles Bronfman Philanthropies. GO ESP is supported
by NHLBI (RC2 HL-103010 to HeartGO, RC2 HL-102923 to LungGO,
RC2 HL-102924 to WHISP). The ESP exome sequencing was
performed through NHLBI (RC2 HL-102925 to BroadGO, RC2 HL-
102926 to SeattleGO). EGCUT work was supported through the
Estonian Genome Center of University of Tartu by the Targeted
Financing from the Estonian Ministry of Science and Education
(grant number SF0180142s08); the Development Fund of the University
of Tartu (grant number SP1GVARENG); the European Regional
Development Fund to the Centre of Excellence in
Genomics (EXCEGEN) [grant number 3.2.0304.11-0312]; and
through FP7 (grant number 313010). EGCUT were further supported
by the US National Institute of Health (grant number
R01DK075787). A.K.M. was supported by an American Diabetes
Association Mentor-Based Postdoctoral Fellowship (#7-12-MN-
02). The BioVU dataset used in the analyses described were obtained
from Vanderbilt University Medical Centers BioVU which
is supported by institutional funding and by the Vanderbilt CTSA
grant ULTR000445 from NCATS/NIH. Genome-wide genotyping
was funded by NIH grants RC2GM092618 from NIGMS/OD and
U01HG004603 from NHGRI/NIGMS. Funding to pay the Open Access
publication charges for this article was provided by a block
grant from Research Councils UK to the University of Cambridge
A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease
Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely based on genome-wide association studies (GWAS) analysis of common SNPs. Leveraging phased haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of 185 thousand CAD cases and controls, interrogating 6.7 million common (MAF>0.05) as well as 2.7 million low frequency (0.005<MAF<0.05) variants. In addition to confirmation of most known CAD loci, we identified 10 novel loci, eight additive and two recessive, that contain candidate genes that newly implicate biological processes in vessel walls. We observed intra-locus allelic heterogeneity but little evidence of low frequency variants with larger effects and no evidence of synthetic association. Our analysis provides a comprehensive survey of the fine genetic architecture of CAD showing that genetic susceptibility to this common disease is largely determined by common SNPs of small effect siz
The Genetic Architecture of Depression in Individuals of East Asian Ancestry: A Genome-Wide Association Study
Importance: Most previous genome-wide association studies (GWAS) of depression have used data from individuals of European descent. This limits the understanding of the underlying biology of depression and raises questions about the transferability of findings between populations. Objective: To investigate the genetics of depression among individuals of East Asian and European descent living in different geographic locations, and with different outcome definitions for depression. Design, Setting, and Participants: Genome-wide association analyses followed by meta-analysis, which included data from 9 cohort and case-control data sets comprising individuals with depression and control individuals of East Asian descent. This study was conducted between January 2019 and May 2021. Exposures: Associations of genetic variants with depression risk were assessed using generalized linear mixed models and logistic regression. The results were combined across studies using fixed-effects meta-analyses. These were subsequently also meta-analyzed with the largest published GWAS for depression among individuals of European descent. Additional meta-analyses were carried out separately by outcome definition (clinical depression vs symptom-based depression) and region (East Asian countries vs Western countries) for East Asian ancestry cohorts. Main Outcomes and Measures: Depression status was defined based on health records and self-report questionnaires. Results: There were a total of 194 548 study participants (approximate mean age, 51.3 years; 62.8% women). Participants included 15 771 individuals with depression and 178 777 control individuals of East Asian descent. Five novel associations were identified, including 1 in the meta-analysis for broad depression among those of East Asian descent: rs4656484 (β = -0.018, SE = 0.003, P = 4.43x10-8) at 1q24.1. Another locus at 7p21.2 was associated in a meta-analysis restricted to geographically East Asian studies (β = 0.028, SE = 0.005, P = 6.48x10-9 for rs10240457). The lead variants of these 2 novel loci were not associated with depression risk in European ancestry cohorts (β = -0.003, SE = 0.005, P = .53 for rs4656484 and β = -0.005, SE = 0.004, P = .28 for rs10240457). Only 11% of depression loci previously identified in individuals of European descent reached nominal significance levels in the individuals of East Asian descent. The transancestry genetic correlation between cohorts of East Asian and European descent for clinical depression was r = 0.413 (SE = 0.159). Clinical depression risk was negatively genetically correlated with body mass index in individuals of East Asian descent (r = -0.212, SE = 0.084), contrary to findings for individuals of European descent. Conclusions and Relevance: These results support caution against generalizing findings about depression risk factors across populations and highlight the need to increase the ancestral and geographic diversity of samples with consistent phenotyping
- …