514 research outputs found

    Circulating amino acids in blood plasma during the peripartal period in dairy cows with different liver functionality index

    Get PDF
    The liver functionality index (LFI) measures the changes of albumin, cholesterol, and bilirubin concentrations between 3 and 28 d postpartum. This composite index, based on variables with direct relevance to liver-specific plasma protein synthesis (albumin), hepatic/intestinal lipoprotein synthesis (cholesterol), and clearance of breakdown products of heme catabolism (bilirubin), provides a tool for evaluating manifestations of hepatic disease. Both energy and protein metabolism are likely to be affected by various physiological challenges in this period but have not been tested systematically. The present study was conducted to profile AA in cows with high or low LFI during the peripartal period and relate this to production outcomes. Eighteen multiparous cows were used from −21 through 28 d around parturition and divided retrospectively into the high or low LFI group. Blood samples were obtained on −21, −14, −7, 1, 3, 7, 10, 14, 17, 21, and 28 d relative to calving, and biomarkers and AA in plasma were measured. Grouping based on LFI resulted in 8 cows with high LFI (HLFI) and 10 cows with low LFI (LLFI). Although the temporal response in dry matter intake (DMI, 16.3 kg/d) and body condition score (2.56) did not differ, cows with high compared with low LFI had greater overall milk production (37.9 vs. 32.9 kg/d) although energy-corrected milk yield did not differ (42.6 vs. 38.7 kg/d). As expected, cows grouped as LLFI had lower cholesterol and albumin but greater bilirubin after calving compared with HLFI animals. Despite similar temporal responses in DMI between groups, concentrations of total AA were greater in HLFI, particularly after calving. Although concentrations of total essential AA (EAA) and branched-chain AA did not differ with LFI status, cows in HLFI had greater concentrations of Thr and Ile postpartum. Nearly all plasma AA concentrations followed the general trend of a nadir at 1 d after calving followed by a gradual increase to prepartal levels before 28 d. Glycine was the only AA exhibiting a gradual increase in concentration through the transition, with a maximum at 7 d postpartum followed by a gradual decrease. We detected no effect of LFI status on plasma Lys, which decreased markedly from −21 d to calving, followed by an increase to prepartal values by d 7. In contrast, concentrations of Met and His decreased markedly between −21 and 10 d and did not reach prepartal values by 28 d. The marked decrease in Gln concentration after calving regardless of LFI might compromise immune function during this period. Overall, the results indicate the existence of an association among inflammation, liver function postpartum, and AA plasma concentrations, irrespective of temporal differences in DMI. Cows with better indices of liver function produced more milk and maintained greater concentrations of total AA and some EAA such as Thr and Ile. Whether these AA played a direct role in the greater milk production remains to be determined

    Effect of dietary starch level and high rumen-undegradable protein on endocrine-metabolic status, milk yield, and milk composition in dairy cows during early and late lactation

    Get PDF
    Diet composition defines the amount and type of nutrients absorbed by dairy cows. Endocrine-metabolic interactions can influence these parameters, and so nutrient availability for the mammary gland can significantly vary and affect milk yield and its composition. Six dairy cows in early and then late lactation received, for 28 d in a changeover design, 2 diets designed to provide, within the same stage of lactation, similar amounts of rumen fermentable material but either high starch plus sugar (HS) content or low starch plus sugar content (LS). All diets had similar dietary crude protein and calculated supply of essential amino acids. Dry matter intake within each stage of lactation was similar between groups. Milk yield was similar between groups in early lactation, whereas a higher milk yield was observed in late lactation when feeding HS. At the metabolic level, the main difference observed between the diets in both stages of lactation was lower blood glucose in cows fed LS. The lower glucose availability during consumption of LS caused substantial modifications in the circulating and postprandial pattern of metabolic hormones. Feeding LS versus HS resulted in an increase in the ratio of bovine somatotropin to insulin. This increased mobilization of lipid reserves resulted in higher blood concentrations of nonesterified fatty acids and ÎČ-hydroxybutyrate, which contributed to the higher milk fat content in both stages of lactation in the LS group. This greater recourse to body fat stores was confirmed by the greater loss of body weight during early lactation and the slower recovery of body weight in late lactation in cows fed LS. The lower insulin to glucagon ratio observed in cows fed LS in early and late lactation likely caused an increase in hepatic uptake and catabolism of amino acids, as confirmed by the higher blood urea concentrations. Despite the higher catabolism of amino acids in LS in early lactation, similar milk protein output was observed for both diets, suggesting similar availability of amino acids for peripheral tissue and mammary gland. The latter could be the result of sparing of amino acids at the gut level due to starch that escaped from the rumen, and to the balanced amino acid profile of digestible protein. This last aspect appears worthy of further research, with the aim to enhance the efficiency of protein metabolism of dairy cows, reducing environmental nitrogen pollution without affecting milk yield potential

    Starch and oil in the donor cow diet and starch in substrate differently affect the in vitro ruminal biohydrogenation of linoleic and linolenic acids

    Get PDF
    Trans isomers of fatty acids exhibit different health properties. Among them, trans-10,cis-12 conjugated linoleic acid has negative effects on milk fat production and can affect human health. A shift from the trans-11 to the trans-10 pathway of biohydrogenation (BH) can occur in the rumen of dairy cows receiving high-concentrate diets, especially when the diet is supplemented with highly unsaturated fat sources. The differences of BH patterns between linoleic acid (LeA) and linolenic acid (LnA) in such ruminal conditions remain unknown; thus, the aim of this work was to investigate in vitro the effects of starch and sunflower oil in the diet of the donor cows and starch level in the incubates on the BH patterns and efficiencies of LeA and LnA. The design was a 4 × 4 Latin square design with 4 cows, 4 periods, and 4 diets with combinations of 21 or 34% starch and 0 or 5% sunflower oil. The rumen content of each cow during each period was incubated with 4 substrates, combining 2 starch levels and either LeA or LnA addition. Capillary electrophoresis single-strand conformation polymorphism of incubates showed that dietary starch decreased the diversity of the bacterial community and the high-starch plus oil diet modified its structure. High-starch diets poorly affected isomerization and first reduction of LeA and LnA, but decreased the efficiencies of trans-11,cis-15-C18:2 and trans C18:1 reduction. Dietary sunflower oil increased the efficiency of LeA isomerization but decreased the efficiency of trans C18:1 reduction. An interaction between dietary starch and dietary oil resulted in the highest trans-10 isomers production in incubates when the donor cow received the high-starch plus oil diet. The partition between trans-10 and trans-11 isomers was also affected by an interaction between starch level and the fatty acid added to the incubates, showing that the trans-10 shift only occurred with LeA, whereas LnA was mainly hydrogenated via the more usual trans-11 pathway, whatever the starch level in the substrate, although the bacterial communities were not different between LeA and LnA incubates. In LeA incubates, trans-10 isomer production was significantly related to the structure of the bacterial community

    Dietary energy level affects adipose depot mass but does not impair in vitro subcutaneous adipose tissue response to short-term insulin and tumor necrosis factor-α challenge in nonlactating, nonpregnant Holstein cows.

    Get PDF
    We assessed effects of overfeeding energy to nonlactating and nonpregnant Holstein cows during a length of time similar to a typical dry period on body lipid storage and the abundance of genes related to insulin signaling, inflammation, and ubiquitination in subcutaneous adipose tissue (SAT) in vitro challenged with insulin and recombinant bovine tumor necrosis factor-α. Fourteen cows were randomly assigned to either a high-energy (OVE; net energy for lactation = 1.60 Mcal/kg of dry matter; n = 7) or control (CON; net energy for lactation = 1.30 Mcal/kg of dry matter; n = 7) diet for 6 wk. Immediately after slaughter, liver, kidneys, and mammary gland were separated and weighed. The adipose tissue mass in the omental, mesenteric, and perirenal depots was dissected and weighed. Subcutaneous adipose tissue was collected from the tail-head region and was used as follows: control, bovine insulin (INS) at 1 ”mol/L, tumor necrosis factor-α at 5 ng/mL (TNF), and their combination. Despite a lack of difference in final body condition score, OVE cows had greater energy intake and were heavier than CON cows. Furthermore, overfeeding led to greater mass of mesenteric and perirenal adipose, liver, and mammary gland. Overall, SAT incubated with INS had an upregulation of insulin receptor (INSR), interleukin-10 (IL10), small ubiquitin-like modifier 3 (SUMO3), and ubiquitin conjugating enzyme E2I (UBC9), whereas TNF upregulated peroxisome proliferator-activated receptor gamma (PPARG), diacylglycerol O-acyltransferase 2 (DGAT2), interleukin-6 (IL6), nuclear factor kappa B subunit 1 (NFKB1), small ubiquitin-like modifier 2 (SUMO2), and UBC9. Regardless of in vitro treatment, feeding OVE upregulated PPARG, fatty acid synthase (FASN), and insulin induced gene 1 (INSIG1). Abundance of PPARG was greater in SAT of OVE cows cultured individually with INS and TNF. The interaction between diet and in vitro treatment revealed that sterol regulatory element binding transcription factor 1 (SREBF1) had greater abundance in SAT from the CON group in response to culture with INS, whereas SAT from OVE cows had greater SREBF1 abundance in response to culture with TNF. The mRNA abundance of IL6 and NFKB1 was greater in response to TNF treatment and overall in CON cows. Furthermore, SAT from these cows had greater IL10 abundance when cultured with INS and TNF. Overall, data highlighted that overfeeding energy increases adipose tissue mass in part by stimulating transcription of key genes associated with insulin signaling, adipogenesis, and lipogenesis. Because SAT thickness or mass was not measured, the lack of effect of overfeeding on body condition score limits its use to predict overall body lipid storage. An overt inflammatory response in SAT after a 6-wk period of over-consumption of energy could not be discerned

    Effects of oil and natural or synthetic vitamin E on ruminal and milk fatty acid profiles in cows receiving a high-starch diet

    Get PDF
    Among trans fatty acids, trans-10,cis-12 CLA has negative effects on cow milk fat production and can affect human health. In high-yielding dairy cows, a shift from the trans-11 to the trans-10 pathway of biohydrogenation (BH) can occur in the rumen of cows receiving high-concentrate diets, especially when the diet is supplemented with unsaturated fat sources. In some but not all experiments, vitamin E has been shown to control this shift. To ascertain the effects of vitamin E on this shift of BH pathway, 2 studies were conducted. The first study explored in vitro the effects of addition of natural (RRR-α-tocopherol acetate) and synthetic (dl-α-tocopherol acetate) vitamin E. Compared with control and synthetic vitamin E, the natural form resulted in a greater trans-10/trans-11 ratio; however, the effect was very low, suggesting that vitamin E was neither a limiting factor for rumen BH nor a modulator of the BH pathway. An in vivo study investigated the effect of natural vitamin E (RRR-α-tocopherol) on this shift and subsequent milk fat depression. Six rumenfistulated lactating Holstein cows were assigned to a 2 × 2 crossover design. Cows received 20-kg DM of a control diet based on corn silage with 22% of wheat, and after 2 wk of adaptation, the diet was supplemented with 600 g of sunflower oil for 2 more weeks. During the last week of this 4-wk experimental period, cows were divided into 2 groups: an unsupplemented control group and a group receiving 11 g of RRR-α-tocopherol acetate per day. A trans-10 shift of ruminal BH associated with milk fat depression due to oil supplementation of a high-wheat diet was observed, but vitamin E supplementation of dairy cows did not result in a reversal toward a trans-11 BH pathway, and did not restore milk fat content

    Immunometabolic status and productive performance differences between periparturient Simmental and Holstein dairy cows in response to pegbovigrastim

    Get PDF
    In the present study, we aimed to investigate the side effects of pegbovigrastim, injected approximately 7 d before parturition and on the day of calving, on a panel of plasma biomarkers to evaluate energy, inflammatory, oxidative, and liver function status. We also addressed treatment responses in different breeds during the transition period. Holstein and Simmental cows were randomly assigned into 2 groups based on expected calving date and according to parity: the treated group (PEG; 14 Holstein and 12 Simmental cows) received pegylated recombinant bovine granulocyte colony stimulating factor (pegbovigrastim, Imrestor; Elanco Animal Health, Greenfield, IN), and the control group (CTR; 14 Holstein and 14 Simmental cows) received saline solution. The PEG or CTR treatments were administered via subcutaneous injection in the scapular region at approximately 7 d (mean 7.80 ± 5.50 d) before expected parturition and within 24 h after calving. Blood samples were collected at -21, -7 (before injection), 1, 3, and 28 d relative to calving. Milk production was recorded at 7, 15, 21, 30, and 42 d. A mixed model with repeated measures was fitted to the normalized data using Proc MIXED of SAS (SAS Institute Inc., Cary, NC). Simmental PEG cows showed higher plasma protein concentrations at 1 and 3 d after calving compared with Simmental CTR and Holstein PEG cows, whereas no differences were detected between Holstein PEG and CTR cows. Albumin was greater at 1 d in Simmental PEG compared with Simmental CTR cows. In contrast, Îł-glutamyl transferase was higher overall (across breed) in PEG than in CTR. The PEG group had higher values throughout the postcalving period compared with CTR. Cows treated with pegbovigrastim had also higher alkaline phosphatase (ALP) activity at 1 and 3 d after calving. The Holstein PEG group had higher ALP activity at 3 d compared with the Holstein CTR and Simmental PEG groups, and higher ALP at 1 d compared with the Simmental CTR group. The PEG group had higher levels of IL-6 at 3 and 28 d but higher IL-1ÎČ only at 28 d after calving compared with the CTR group. Overall, Holstein cows were characterized by a greater response in the production of inflammation biomarkers (cytokines, haptoglobin, and ceruloplasmin). In addition, PEG cows had higher values of zinc at 1 and 3 d after calving compared with CTR cows. The response observed in plasma biomarkers for energy metabolism and liver functionality after pegbovigrastim treatment in Simmental and Holstein cows was not different from that in control cows. However, our data shed light on the different metabolic adaptations during the transition period between Simmental and Holstein cows, characterized by different energy, inflammatory, and oxidative pattern responses. For the first time, we have highlighted the effect of pegbovigrastim in maintaining stable cytokine levels during the first month after parturition, reflecting greater regulation of neutrophil recruitment, trafficking, and maturation during the inflammatory response. These results provide evidence of the immunomodulatory action of pegbovigrastim around parturition, when dairy cows are highly immunosuppressed. At the same time, these data demonstrate that increasing release of cytokines after parturition is not linked to exacerbation of a systemic inflammation evaluated based on haptoglobin and ceruloplasmin levels
    • 

    corecore