4,033 research outputs found

    Oil-air mist lubrication as an emergency system and as a primary lubrication system

    Get PDF
    The feasibility of an emergency aspirator once-through lubrication system was demonstrated as a viable survivability concept for Army helicopter mainshaft engine bearings for periods as long as 30 minutes. It was also shown in an experimental study using a 46-mm bore bearing test machine that an oil-air mist once-through system with auxiliary air cooling is an effective primary lubrication system at speeds up to 2,500,000 DN for extended operating periods of at least 50 hours

    Aircraft engine sump-fire studies

    Get PDF
    Results of ongoing experimental studies are reported in which a 125-millimeter-diameter-advanced-bearing test rig simulating an engine sump is being used to find the critical range of conditions for fires to occur. Design, material, and operating concepts and techniques are being studied with the objective of minimizing the problem. It has been found that the vapor temperature near a spark ignitor is most important in determining ignition potential. At temperatures producing oil vapor pressures below or much above the calculated flammability limits, fires have not been ignited. But fires have been routinely started within the theoretical flammability range. This indicates that generalizing the sump-fire problem may make it amenable to analysis, with the potential for realistic solutions

    Overview of liquid lubricants for advanced aircraft

    Get PDF
    An overall status report on liquid lubricants for use in high-performance turbojet engines is presented. Emphasis is placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is iven of the development of turbine engine lubricants which led to synthetic oils with their inherent modification advantages. The status and state of development of some nine candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Also, alternatives to high temperature fluid development are described. The importance of of continuing work on improving high temperature lubricant candidates and encouraging development of fluid base stocks is discussed

    Improved boundary lubrication with formulated C-ethers

    Get PDF
    A comparison of five recently developed C-ether-formulated fluids with an advanced formulated MIL-L-27502 candidate ester is described. Steady state wear and friction measurements were made with a sliding pin on disk friction apparatus. Conditions included disk temperatures up to 260 C, dry air test atmosphere, 1 kilogram load, 50 rpm disk speed, and test times to 130 minutes. Based on wear rates and coefficients of friction, three of the C-ether formulations as well as the C-ether base fluid gave better boundary lubrication than the ester fluid under all test conditions. The susceptibility of C-ethers to selective additive treatment (phosphinic esters or acids and other antiwear additives) was demonstrated when two of the formulations gave somewhat improved lubrication over the base fluid. The increased operating potential for this fluid was shown in relationship to bulk oil temperature limits for MIL-L-23699 and MIL-L-27502 type esters

    Resin additive improves performance of high-temperature hydrocarbon lubricants

    Get PDF
    Paraffinic resins, in high temperature applications, improve strength of thin lubricant film in Hertzian contacts even though they do not increase bulk oil viscosity. Use of resin circumvents corrosivity and high volatility problems inherent with many chemical additives

    High-temperature, long-life polyimide seals for hydraulic actuator rods

    Get PDF
    Two types of polyimide seals are developed for hydraulic actuator rod in low pressure second stage of two-stage configuration. Each seal melts test objectives of twenty million cycles of operation at 534 K. Analytical and experimental study results are discussed. Potential applications are given

    Influence of vertical transport on free tropospheric aerosols over the central USA in springtime

    Get PDF
    Measurements of the atmospheric aerosol chemical composition during the Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) indicate substantial vertical transport of boundary layer aerosol to the free troposphere over the south-central United States during springtime. Mixing ratios of water-soluble aerosol Ca 2+ at 6 - 12 km altitude exhibited a median mixing ratio of 20 pptv, with 15% of the measurements \u3e 100 pptv and a maximum of ! 235 pptv. In air parcels with enhanced Ca 2+, the ratios K+/Ca 2+, Mg2+/Ca 2+, and Na+/Ca 2+ in the bulk aerosol were distinctly characteristic of those in limestone and/or cement. Significantly enhanced mixing ratios of aerosol SO42-, NO3-, and NH4 + were also concomitant with the elevated Ca 2+, suggesting transport of both crustal and anthropogenic aerosols to the upper troposphere. The mass concentration of water-soluble aerosol material was in the range 0.1 - 6 pg m -3 STP, and estimated crustal dust levels were 7 - 160 pg m \u273 ST

    Tropospheric sulfate distribution during SUCCESS: Contributions from jet exhaust and surface sources

    Get PDF
    The distribution of SO4= aerosol over the central US during SUCCESS indicates that surface sources of SO4= and SO2 in the western US caused SO4= enhancements up to 10 km altitude. The mean (median) SO4= mixing ratio in the mid- and upper-troposphere increased from 24 (16) pptv over the Pacific ocean to 58 (29) pptv over the central plains. Above 10 km the SO4=mixing ratio was essentially the same in both regions, and also when the geographic classifications were further partitioned into upper tropospheric and lower stratospheric categories (mean near 40 pptv). No obvious enhancements of SO4= could be detected in jet exhaust plumes, but this may reflect the difficulty of keeping a large airborne sampling platform within a turbulent wake for time periods longer than a few seconds. Expected SO4=enhancements (based on observed CO2 enhancements and emission factors for these two species) were generally much smaller than the variability of ambient SO4= mixing ratios, so our null result does not mean that aircraft do not emit H2SO4
    corecore