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IMPROVED BOUNDARY LUBRICATION WITH FORMULATED C-ETHERS

by William R. Loomis*

National Aeronautics and Space Administration

Lewis Research Center

Cleveland. Ohio 44135

ABSTRACT

A boundary lubrication study was made to compare five recently developed

C--ether-formulated fluids with an advanced formulated MIL-L-27502 candidate

ester. Steadym-state wear and friction measurements were made with a sliding

pin-on-disk friction apparatus. Conditions included disk temperatures up to

260 " C. dry-air test atmosphere, 1-kilogram load, 50-rpm disk speed, and

test times to 130 minutes. Based on wear rates and coefficients of fric-

tion. three of the C-ether formulations as well as the C-ether base fluid
a

gave better boundary lubrication than the ester fluid under all test condi-

tions. The susceptibility of C-ethers to selective additive treatment

^phosphinic esters or acids and other antiwear additives) was demonstrated

when two of the formulations gave somewhat improved lubrication over the

base fluid. Also, the increased operating potential for this fluid was

shown in relationship to bulk oil temperature limits for MIL-L-23699 and

MIL-L47502 type esters.

INTRODUCTION

One anticipated trend in the development of advanced jet engines is

toward hiqher operating temperatures to improve fuel efficiency and perfor-

mance. Hiqher engine temperatures will place increased thermal demands cn
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the lubricant. The lubricant will be required either to operate at highew,

oil temperatures or to be cooled by larger (heavier) heat exchanges.

The Air Force has funded programs with the goal of developing ester type

lubricants with a bulk oil temperature (BOT) capability of 240° C (465° F)

(1), (2), and has issued a target specification MIL-L-27502 which, slightly

more conservatively, requires a BOT capability of 220 C (428° F). No oil

has ,yet completely qualified under this specification, but a formulated

hindered polyol ester of pentaerythritol is a promising candidate fluid

which meets most of the requirements.

For future engines with Mach 4+ capability, it is estimated that lubri-

cants with at least a 260 ` C (500 * F) BOT capability will be needed (3).

Polyphenyl ether fluids with the desired oxidative stability are available

(4), but their pour points are too high. typically +5 v C (40' F). However,

polyphenyl ether analogs (C-ethers'), which contain sulfur instead of oxygen

in some or all of the phenyl to phenyl linkages, have much lower pour

points, on the order of -29° C (-20 0 F), and still retain good oxidative

stability at 260 ` C (500° F). They were first reported in Ref. (5) and were

further studied under NASA contracts (6), (7).

In the present study, a pin-on-disk wear machine was used to determine

the friction and wear characteristics of formulated C-ether blends. The

scope of these studies included: (1) the determination of wear rates and

friction coefficients of five C-ether formulations from 20 0 to 260' C, and

(2) a comparison of these results with those of the MIL-L-27502 candidate

ester of pentaerythritol and with those of the C-ether base stock.

APPARATUS

The sliding friction and wear apparatus is shown in Fig. 1. The test

specimens, contained inside a stainless-steel chamber, consist of a station-
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ary 0.476-cm-radius, hemi spherically tipped rider in sliding contact with a

rotating 6.35-cm-diameter disk. Rider holders of three different lengths

were used to permit three concentr i ;. wear tracks to be run on a single disk,

thereby eliminating the need to refinish disks after each ru . Sliding

velocities ranged from about 7.1 to 9.1 m/min as disk rotational speed was

maintained at 50 rpm for all three rider holders.

A normal load of 1 kg (initial Hertz stress, 1x109 N/m2 ) was applied

with a dead weight. Disks were made of consumable-vacuum-melted (CVM) M-50

tool steel and heat treated to a hardness of Rockwell C62 to C64. Riders

were made of pure iron (99.99 percent iron) and were annealed to a hardness

of 70 to 92 kg/mm2 diamond pyramid hardness. Softer iron riders were used

instead of M-50 tool steel to achieve larger and more easily measured wear

scars than found in previous studies (8), (9). Also, the load and surface

sliding velocities were selected to avoid elastohydrodynamic and "mixed"

lubrication regions (10).

The disk was partially submerged in a polyimide cup containing the test

lubricant and was heated by induction. Bulk lubricant temperature was mea-

sured with a thermocouple while disk temperature was monitored with an

infrared pyrometer. Frictional force was measured with a strain gage and

recorded on an X-Y recorder.

The test atmosphere was filtered air dried to less than 100 ppm water.

The moisture content was monitored by a moisture analyzer with an accuracy

of 110 parts per million. The moisture analyzer worked on the principle of

weighing and indicating micro quantities of water vapor on a hygroscopically

coated quartz crystal. A dry-air atmosphere was selected because it had

been determined that. in general, lower wear rates were obtained when moist

air was used (8).
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PROCEDURE

Disks were ground and lapped to a surface finish of 1x10
-7
 to 2x10-7 m

(4 to 8 uin.) rms. Rider tips were machined and polished to a surface fin-

ish of 5x10-8 to 10x10-8 m (2 to 4 uin.) rms. Specimens were scrubbed

with a paste of levigated alumina and water, rinsed with tap water and

distilled water, and then placed in a desiccator.

Test lubricants were degassed at approximately 150' C (302° F) at

2.1x102 N/m2 pressure for 1 hr. Measurements made using the Karl Fisher

technique indicate that this degassing procedure reduces dissolved water

content in the test fluids to g --s than ?0 ppm. Approximately 3x10-5 m3

(30 milliliters) of lubricant was employed. The test chamber (3.7x10 -3 m3

volume) was purged with the dry air test atmosphere for 1!' min at a flow

rate greater than 5x10 2 m3 /hr. During the high-temperature runs the

disk was heated by induction to test temperature while rotating before the

rider was loaded against the disk. The flow rate of the dry-air atmosphere

was reduced to 3.5x10-2 m3 /hr, and a pressure of 6.9x10 3 N/m2 (1 psig)

was maintained in the test chamber. The lubricant was heate. only by heat

transfer from the disk. At disk temperatures of 150 0 and 260 0 C (302° and

500' F) the bulk oil temperatures stabilized at approximately 140° and

230' C (284 9 and 446° F), respectively.

Frictional force, bulk lubricant and disk temperatures were continuously

monitored. Rider wear scar diameters were measured after time intervals of

10, 40, 70, 100, and 130 minutes. Disk wear with pure-iron riders was round

to be so small that it was not measurable.

EXPERIMENTAL LUBRICANTS

The experimental fluids used in this study were a referenced fully

formulated ester, a C-ether base fluid (modified polyphenyl ether), and five
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formulated C-ether fluids. Some typical properties of the ester and the

C-ether base fluids are given in Table 1. The formulates fluids, which con-

tain no more than 0.10 percent by weight of any one additive, have essen-

tially the same properties as the C-ether base fluid. Table 2 gives the

additive contents, structures, and functions for all the test fluids.

Formulated Ester

The fully formulated ester is a special synthesized fluid whose

base stock is a mixture of hindered polyol esters, polyester, and

dipentaerythritol esters. It was developed (1), (2) as a MIL-L -27502

specification candidate lurbicant with a potential -400 to 240 4 C operating

range. Generic names for the additives are given in Table 2 for this refer-

enced fluid where exact information is considered proprietary by the fluid

manufacturer.

C-Ether Base Fluid

The C-ether base fluid is a mixture of a three-ring polyphenyl thioether

and three four-ring pol yyphenyl ether-thioether components, the structures

are presented in Fig. 2 (5). (6), (7). A dimethyl silicone antifoaming

additive is also present.

C-Ether Formulations

The five formulated C-ether fluids were subject previously to extensive

screening tests (7). Description and concentrations of the additives along

with their general function or purpose are listed in Table 2. Comments on

the rationale for selecting the additives shown in Table 2 are presented for

each C-ether formulation, as follows:

Formulation I. - This formulation contained two antiwear additives

consisting of 0.0?-weight-percent perfluoroglutaric acid (PFGA) and 0.05-

weight-percent dij2-ethylhexyl] perfluoroglutarate (ester of PFGA).
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Previous bearing test studies with C-ether-plus-PFGA showed a quick loss

of additive (6). Therefore, this formulation was devised to use the fast-

adsorbing/reacting PFGA in combination with the more slowly reacting com-

pound PFGA ester.

Formulation II. - The second formulation consisted of 0.10-weight-

percent 2-[hexafluoro-i-propoxy] ethyl phenylphosphinate. This multipurpose

additive is a boundary lubrication improver as well as a corrosion and oxi-

dation inhibitor. both of which reduce sludge.

Formulation III. - The third formulation contains 0.10-weight-percent

i-propylphenylphosphinate as the antiwear additive plus 0.05-weight-percent

trichloroacetic acid to improve fluid wettability.

Formulation IV. - The fourth formulation contained 0.015-weight-percent

m-trifluoromethylphenylphosphinic acid, which functions as a boundary lubri-

cator as well as an "antisludge" additive. In a previous study (6) one

formulation containing 0.10-weight-percent phenylphosphinic acid gave good

bearing lubrication, but large amounts of sludge were f ci-med. This sludge

could come from reaction of the C-ether base stock at reactive sites on the

metal. To prevent this, the additive was partially fluorinated to form an

even more protective absorbed film between the metal and the C-ether.

Formulation V. - The fifth formulation contained 0.10-weight-percent of

a commercial acid phosphate mixture (Table 2) and 0.05-weight-percent of

dibenzyl disulfide. This formulation is expected to function similar to

formulation IV. The difference from formulation IV is that an active sulfur

compound is combined with a phosphorous compound to function as the metal

deactivator.
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RESULTS AND DISCUSSION

Steady-State Wear

Typical wear results for all reference and test fluids in Figs. 3 and 4

show a linear relation with sliding distance in the range of about 200 to

1100 m, or 50 to 130 minutes test time. Wear rates were calculated from the

slopes of these lines using least-squares estimates. These "steady-state

wear rates" are presented in Table 3 for three test runs at each fluid-

temperature combination. The correlation coefficient R is shown in

Table 4, where R is a measure of the degree of fit for a linear relation

between rider wear and sliding distance. The consistently high values of

R between 0.995 and 0.999 indicate an extremely high degree of correla-

tion. Good reproducibility of the steady-state wear rate results in Table 3

is shown by the fact that the ratio of standard deviations to mean wear

values was generally in the range of 0.1 to 0.2.

Formulated ester. - This reference fluid was used because it represents

the most advanced ester lubricant known to date. Although it has not been

fully qualified as a MIL-L-27502 specification lubricant, it is considered

to be a prime candidate. Typical wear results are plotted in Fig. 3(a), and

the average wear rates for three separate test runs are summarized in

Table 3 and shown graphically in Fig. 5 for each of the three disk operati g

temperatures.

The steady-state wear rates are 15x10
-14

 and 26x10 -14 m3/m at 20° and

150° C, respectively. These wear results and the appearance of the rider

wear surfaces indicate that lubrication was comparable to that in prior

studies with a MIL-L-23699 formulated type II ester that was considered only

marginal (8). However, the wear rate at 260° C is 6.1x10
-14

 m3/m. The
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increased effectiveness of the additives at this high temperature is prob-

ably due to greater chemical reactivity to form protective surface films.

C-ether base fluid. - Typical wear results for the base fluid appear

in Fig. 3(b), and the average steady-state wear rates for each temperature

are given in Table 3 and in Fig. 5. Year rates decreased slightly from

6.9x10
-14

 m3 /m at 20" C to 4.1x10
-14

 m3/m at 260° C, indicating that

the fluie molecules are more reactive at higher temperatures and apparently

follow the general relationship that exists between wear and reactivity as

described in Ref. (11). The steady-state wear rates were about one-half the

comparable values for the reference ester fluid at temperatures of 20 0 and

150' C and about two-thirds the value at 260' C. These results show the

inherently better lubricating ability of the sulfur-containing C-ether base

fluid as compared to a fully formulated ester.

C-ether formulations. - Typical wear results for formulations I to V

appear in Fig. 4, and the average steady-state wear rates for three separate

runs for each test condition are shown in Table 3 and in Fig. 5. In gen-

eral, these fluids follow the same pattern of wear behavior with temperature

as the formulated ester fluid: that is, steady-state wear rates were low at

20' C, reached maximum values at the intermediate temperature of 150 * C, and

decreased to lower values at 260 0 C. One exception to this general wear

trend was observed for formulation I, where wear rate remained essentially

constant at about 1x10 14 n6 m at temperatures of 150° and 260 ` C.

Effectiveness of the various additives on wear is shown by the compari-

sons between the steady-state wear rates for the five formulations and the

C-ether base fluid in Fig. ^. Formulations 1I and III yielded lower wear

than the base fluid at all test conditions and gave the best overall wear

results. Formulation IV gave somewhat less desirable wear behavior at the

8



150' C level than the other formulations. Formulation I gave lower wear

only at 200 C. The most adverse wear behavior was shown by formulation V.

which gave higher wear than the C-ether-base fluid at all test conditions.

Formulations II and III, which gave the best wear results, were the only two

fluids containing esters of phenylphosphinic acids. Any further efforts in

formulating C-ether fluids should include additional studies on these types

of antiwear compounds.

Figure 6 shows comparative plots of steady-state wear rate data for the

formulated ester, the C-ether base fluid, and C-ether formulations II and

III. This figure shows the increased thermal operating potential for

formulated C-ethers in relationship to bulk oil temperature limits for

MIL-L-23699 and revised MIL-L-21502 type esters. This difference in tem-

perature operation above 240° C is even more significant because of the

increasing ester oxidative instability at these higher temperatures.

Steady-State Coefficient of Friction

The steady-state friction coefficients for all the test fluids at the

three operating temperatures are compared in Fig. 7 and presented in

Table 3. During the run-in period the coefficients were higher. As shown

in Fig. 7 the general trend of all fluids evaluated was for the values to

double when operating temperatures are increased from 20 * to 150 * C; the

average value going from about 0.08 up to 0.16 for most fluids. Further

•	 increasing the disk temperatures from 150' C to 260' C resulted in decreases

in friction coefficients to 0.14 for the ester f`uid and C-ether formula-

tions II, III, and IV, while the values increased to about 0.18 for the

C-ether base fluid and C-ether formulations I and V.

A qualitative study of friction can be made by observing the friction

traces during steady-state operating periods. Four general types of fric-
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tion traces were found. In addition, audible friction noise occurred at

hiqh temperatures in some runs when apparent fluid starvation in the system

due to evaporation was evident. Representative examples are illustrated and

described in Table 5, and a listing is shown in Table 6 of types encountered

for each test fluid at each of the thrre operating disk temperatures. The

four types of friction traces are characterized as (1) smooth, wide-band

S w ; (2) smooth, narrow-band S n ; (3) erratic, spiked E s ; and (4) erratic,

wandering E w. Each type of trace is discussed separately below.

Smooth, wide-band. - The smooth, wide-band type friction trace was ob-

served for all fluids only at the 20° C operating level, where lower coeffi-

cients of friction (0.06 to 0.09) were measured. Friction trace variation

ranged from about *0.05 to *0.07.

Smooth, narrow-band. - Five of the seven fluids exhibited the smooth,

narrow-band type of friction at 150 * C, and two of the fluids showed this

type at 260' C. Friction trace variation ranged from *0.01 to *0.02.

Erratic, spiked. - The erratic, spiked friction trace was similar to the

smooth, narrow-band trace in that normal variations were about *0.02. How-

ever, there were periodic "spikes" or surges in the friction values to about

twice the normal values. This frictional behavior was noted for several of

the fluids at the 150" and 260 * C operating temperatures. At 260 0 C it was

usually accompanied by audible friction noise in the test components.

Erratic, wandering. - Erratic. wandering friction traces displayed a

somewhat larger friction variation (about *0.03) than does the erratic,

spiked type of friction trace. It is the most erratic or irregular friction

that was observed in all the experimental runs. Audible friction noise

accompanied the two examples that were noted at the 260' C test conditions.
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Based on this qualitative analy0 s, the formulated ester fluid gave the

best results, exhibiting smooth friction traces over the entire temperature

range. The C-ether formulation II fluid had erratic, spiked traces with

audible noise at the two upper operating temperatures . The remaining fluids

showed mixed results, with both smooth and erratic friction. No correlation

exists between the type of friction trace and the coefficient of friction

values, but there appears to be some relation between trace type and

temperature.

All the friction and wear results are summarized in Table 3, including a

tabulation of the run-in wear rates. Run-in wear behavior of these lubri-

cants could be important if it is a significant part of the total wear.

Over longer running periods, such as these tests, run-in wear is less sig-

nificant than in previous studies where shorter test durations were used

(8), (9).

Two problems observed for the C-ether fluids were (1) the increased

volatility of the fluids at the 260° C disk temperature that rewired addi-

tional fluid to be added to the test lubricant reservoir cup durin

incremental testing, and (2) the formation of sludge material during fric-

tion and wear studies that is a potential filter-clogging agent in system

applications [e.g., as encountered in the bearing tests of Ref. (7)].

Sludge formation was protably due to mild corrosive wear in an oxidizing

atmosphere. Any adverse effect of this ^.. _̀ •rial on abrasive wear must have

been minimal because total wear decreased as test temperatures increased

from 150° to 260° C.

SUMMARY OF RESJI.TS AND CONCLUSIONS

Steady-state wear and friction measurements were determined under bound-

ary lubrication conditions in a pin-on-disk sliding friction and wear
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apparatus at disk temperatures of 20 ` , 150% and 260' C with five C-ether

formulations containing pho3phinic esters or acids and oiher antiwear addi-

tives. Results were compared with those obtained under similar conditions

for a fully formulated MIL-L-27502 candidate ester lubricant and the C-ether

base stock as reference oils. Test components were annealed, pure-iron

riders slidinq against rotating, hardened, consumable-vacuum-melted (CVM)

M-50 tool steel disks in a dry-air (<100 ppm H 20) atmosphere. Other test

conditions were a load of 1 kilogram (initia', Hertz stress. 1x10 9 N/mI),

a disk speed of 50 rpm, which results in sliding velocities of 7.1 to

9.1 m/min, and time sequences for each test run of 1 to 130 min. The major

conclusions are:

1. The susceptibility of C-ethers to selective additive treatment was

demonstrated. Two of the C-ether formulations gave somewhat better boundary

lubrication than the C-ether base fluid. based on steady-state wear rates

and coefficients of friction. A third f.-ether formulation gave less desir-

able wear behavior only at the 150 * C test temperature level. These formu-

lations all contained phosphinic acids ur esters, inciudino ore that was a

mixture of phenylphosphinic acid ester and trichloroacetic 4.1".

2. The other two C-ether formulations yielded higher wear rates and

friction coefficients than the C-ether base fluia for most of the tempera-

ture range. One of these formulations contained a blend of a glutaric acid

and an ester of this acid. and the other one contained an acid phosphate

mixture and dib g!n7yl disulfide.

3. The sulfur-containing C-ether fluids were found to be inherently

better boundary lubricants compared to the fully formulated ester. Three

of the formulated C-ethers as well as the bast fluid shored significantly

better lubricating ability than the ester over the entire temperature

In
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a	 range. T e only C-ether formulation to give consistently higher steady-

state wear values contained acid phosphate and dibeniyl disulfide additives.

t	 4. The increased thermal operating potential for the formulated C-ethers

was shown in relationship to bulk oil temperature limits for MIL-L-23699 and

r	
MIL-L-27502 candidate esters.

5. A qualitative method for comparing friction behavior was devised

•	 where friction traces during steady-state testing were designated as one of

the following: (a) smooth, wide-band Sw; (b) smooth, narrow-band Sn;

(c) erratic, spiked E s ; and (d) erratic, wandering E w . No correlation

exists betr!een the type of friction trace and the coefficient of friction

values, but the trace type seems to be temperature related. It varied from

smooth (wide-band) operation at 20° C for all fluids to an erratic (both

spiked and wandering) behavior at 260° C for all five C-ether formulated

fluids. The ester fluid gave a smooth friction trace over the entire tem-

perature range.
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TABLE 2. - ADDITIVE CONTENTS AND FUNCTIONS OF TEST FLUIDS

Test fluid Additive Additive Additive structure Additive function
content,
wt%

Formulated ester* Proprietary metal derivatives consisting (j) (j) Deposit inhibitor
(specification- of (1) a complexing agent and (2) a
MIL-L -27502 metal compound that is compiaxed by
candidate) that agentf

Alkylated amine (•) Oxidation inhibitor

Aromatic amine (•) Oxidation inhibitor

Triphenyiphosphine oxide W Metal passivator (corrosion
and oxidation inhibitor)

Metal deactivator § (§) Magnesium corrosion in-
hibitor

C-etherbase Dimethyl silicone 0 0 (CHg)3SiO[CH^23i0} Si(CH 3) 3 Antifoaming agent
fluid (Grade. 350 CS at 25o C) n

C-ether' Perfluoroglutaric acid 0.07 H02C (CF 2) 3CO2H Fast-reacting boundary
formula- lubrication
tion I

di (2-ethylhexyl) perfluoroglutarate . 05 O Slow-reacting boundary
(C4Hg -(CH -CH2 -0-C)2 -(CF2) 3 lubrication

C 2 H 
5

C-ether 2 -(hexafluoro -i-propoxy) ethyl 0.10
^
r^l	 0 Boundary lubrication and

formula- phanylphosphinate //P7 O(CH2)20CH(CF3)2 antisludge agent

tion II H
C-ether j-propylphenylpbosphinate 0.10

/^
f /'^ 1	 0@1' // Boundary lubrication

formula- P, O-CH(CHA
tion III H

Trichloroscetic acid .05 Q Boundary lubrication
CCl 3-C-OH (wettability agent)

C-ether m_- trifluoromethyl- 0.075 Boundary lubrication and
formula- phenylphosphinic acid //@O)-4 OH antisludge agent
tion IV CF3	 H

C-ether Commercial acid phosphate mixture 0.10 ^0 Boundary lubrication
formula- CH -O-(CH2CH	 -P- OH9 19	 2O)5
tion v \Ox

RK=H or ethylene oxide chain)

Dibentyl disulfide .05 CH2S-SCH2 Antisludge agent when com -
OQ bined with phosphorous

additive

'Refs. L), L).
tDsscription of complexing agent given in ref. (12).
j Proprietary information L), (J.
§ More exact description is proprietary (2).

^ ^ W eight percentage of =tifoaming agent to proprietary.
"All C-ether formulations contain antifoaming agent.
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BACK AND WHITE PHOTOGRAPH

TABLE 8. - TYPES OF FRICTION TRACES

FROM SLIDING FRICTION EXPERIMENTS

-

.	 .

Test fluid Disk temperature, oC

20 1 150 1	 280

Friction trace type*

Formulated ester Sw an an
C-ether base fluid Sw Ea Sn
C-ether formulation I Sw Sn Ea
C-ether formulation 11 Sw Es Es , N
C-sther formulation III Sw Sn Ew,N
C-ether formulation IV Sw Sn Ew,N
C-ether formulation V I	 Sw I	 Sn I	 Es , N

*Types of friction traces illustrated in Table 5.

Rider (0.476-cm rad)
I

Friction	 i	 Disk
Applied load '4-' force	 !

ar Lubricant
level

° °
o	 ZThermocouple

0 0 0 \,	 A connection

o	 ^--- induction-
heatin0 111	 '^1	 I	 9
half coil

Lubricant cup

o"o	 CD -12360-15

Figure 1. - Friction and wear apparatus.
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I	 Disk
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la ► C-ether formulation I.
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(c) C-ether formulation III.
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Id) C -ether formulation IV.
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0	 200	 4X	 600	 S00	 1000	 1200
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(e) C-ether formulation V.

Figure t - loial rider weer as a function of sliding dis-
tance for fire C-Ww formulations at three disk ten-
watures.
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(b) C-ether formulation II.
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Figure 5. - Steady-state rider wear rah at three disk tempera-
tures for formulated ester, C-ether base fluid, and five
C-ether formulations.
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FULLY FORMULATED ESTER
(MIL-L-2502 CANDIDATE)

•— C-MR BASE FLUID

"-- 2 C-ETHER FORMULATIONS

BULK OIL TEMPERATURE LIMITS:

MIL-L-21502

(REVISED TARGETh
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I
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Figure 6. - Steedy-state weir as a function of disk temperatures from
200 to 2600 C for a formulated ester and C-ether fluids.
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Figure 7. - Coefficient of friction during steady-state wear at
three disk temperatures for formulated ester. C-ether base
fluid, and five C-ether formulations.
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