20 research outputs found

    FRUITFLYRISKMANAGE: A Euphresco project for Ceratitis capitata Wiedemann (Diptera: Tephritidae) risk management applied in some European countries

    Get PDF
    Ceratitis capitata (Wiedemann), the Mediterranean fruit fly or medfly, is one of the world's most serious threats to fresh fruits. It is highly polyphagous (recorded from over 300 hosts) and capable of adapting to a wide range of climates. This pest has spread to the EPPO region and is mainly present in the southern part, damaging Citrus and Prunus. In Northern and Central Europe records refer to interceptions or short-lived adventive populations only. Sustainable programs for surveillance, spread assessment using models and control strategies for pests such as C. capitata represent a major plant health challenge for all countries in Europe. This article includes a review of pest distribution and monitoring techniques in 11 countries of the EPPO region. This work compiles information that was crucial for a better understanding of pest occurrence and contributes to identifying areas susceptible to potential invasion and establishment. The key outputs and results obtained in the Euphresco project included knowledge transfer about early detection tools and methods used in different countries for pest monitoring. A MaxEnt software model resulted in risk maps for C. capitata in different climatic regions. This is an important tool to help decision making and to develop actions against this pest in the different partner countries

    Commodity risk assessment of Momordica charantia fruits from Honduras

    Get PDF
    The European Commission requested the EFSA Panel on Plant Health to prepare and deliver risk assessments for commodities listed in Commission Implementing Regulation (EU) 2018/2019 as ‘High risk plants, plant products and other objects’. Momordica fruits originating from countries where Thrips palmi is known to occur qualify as high risk plants. This Scientific Opinion covers the introduction risk for T. palmi posed by fruits of Momordica charantia L. imported from Honduras, taking into account the available scientific information, including the technical information provided by the National Service of Agrifood Health and Safety (SENASA) of Honduras. The risk mitigation measures proposed in the technical dossier from Honduras were evaluated taking into account the possible limiting factors. An expert judgement is given on the likelihood of pest freedom taking into consideration the potential pest pressure in the field, the risk mitigation measures acting on the pest in the field and in the packinghouse, including uncertainties associated with the assessment. For T. palmi on M. charantia fruits from Honduras, an expert judgement is given on the likelihood of pest freedom following the evaluation of the risk mitigation measures acting on T. palmi, including any uncertainties. The Expert Knowledge Elicitation indicated, with 95% certainty that between 9,406 and 10,000 M. charantia fruits per 10,000 will be free from T. palmi

    Commodity risk assessment of Momordica charantia fruits from Mexico

    Get PDF
    The European Commission requested the EFSA Panel on Plant Health to prepare and deliver risk assessments for commodities listed in Commission Implementing Regulation (EU) 2018/2019 as ‘High risk plants, plant products and other objects’. Momordica fruits originating from countries where Thrips palmi is known to occur qualify as high risk plants. This Scientific Opinion covers the introduction risk for T. palmi posed by fruits of Momordica charantia L. imported from Mexico, taking into account the available scientific information, including the technical information provided by the National Service of Health, Safety and Agrifood Quality (Senasica) of Mexico. The risk mitigation measures proposed in the technical dossier from Mexico were evaluated taking into account the possible limiting factors. An expert judgement is given on the likelihood of pest freedom taking into consideration the potential pest pressure in the field, the risk mitigation measures acting on the pest in the field and in the packinghouse, including uncertainties associated with the assessment. For T. palmi on M. charantia fruits from Mexico, an expert judgement is given on the likelihood of pest freedom following the evaluation of the risk mitigation measures acting on T. palmi, including any uncertainties. The Expert Knowledge Elicitation indicated, with 95% certainty that between 9,492 and 10,000 M. charantia fruits per 10,000 will be free from T. palmi

    Integrating adverse effect analysis into environmental risk assessment for exotic generalist arthropod biological control agents: a three-tiered framework

    Get PDF
    Environmental risk assessments (ERAs) are required before utilizing exotic arthropods for biological control (BC). Present ERAs focus on exposure analysis (host/prey range) and have resulted in approval of many specialist exotic biological control agents (BCA). In comparison to specialists, generalist arthropod BCAs (GABCAs) have been considered inherently risky and less used in classical biological control. To safely consider exotic GABCAs, an ERA must include methods for the analysis of potential effects. A panel of 47 experts from 14 countries discussed, in six online forums over 12 months, scientific criteria for an ERA for exotic GABCAs. Using four case studies, a three-tiered ERA comprising Scoping, Screening and Definitive Assessments was developed. The ERA is primarily based on expert consultation, with decision processes in each tier that lead to the approval of the petition or the subsequent tier. In the Scoping Assessment, likelihood of establishment (for augmentative BC), and potential effect(s) are qualitatively assessed. If risks are identified, the Screening Assessment is conducted, in which 19 categories of effects (adverse and beneficial) are quantified. If a risk exceeds the proposed risk threshold in any of these categories, the analysis moves to the Definitive Assessment to identify potential non-target species in the respective category(ies). When at least one potential non-target species is at significant risk, long-term and indirect ecosystem risks must be quantified with actual data or the petition for release can be dismissed or withdrawn. The proposed ERA should contribute to the development of safe pathways for the use of low risk GABCAs

    Worldwide tests of generic attractants, a promising tool for early detection of non-native cerambycid species

    Get PDF
    A large proportion of the insects which have invaded new regions and countries are emerging species, being found for the first time outside their native range. Being able to detect such species upon arrival at ports of entry before they establish in non-native countries is an urgent challenge. The deployment of traps baited with broad-spectrum semiochemical lures at ports-of-entry and other high-risk sites could be one such early detection tool. Rapid progress in the identification of semiochemicals for cerambycid beetles during the last 15 years has revealed that aggregation-sex pheromones and sex pheromones are often conserved at global levels for genera, tribes or subfamilies of the Cerambycidae. This possibly allows the development of generic attractants which attract multiple species simultaneously, especially when such pheromones are combined into blends. Here, we present the results of a worldwide field trial programme conducted during 2018-2021, using traps baited with a standardised 8-pheromone blend, usually com-plemented with plant volatiles. A total of 1308 traps were deployed at 302 sites covering simultaneously or sequentially 13 European countries, 10 Chinese provinces and some regions of the USA, Canada, Australia, Russia (Siberia) and the Caribbean (Martinique). We intended to test the following hypotheses: 1) if a species is regularly trapped in significant numbers by the blend on a continent, it increases the prob-ability that it can be detected when it arrives in other countries/continents and 2) if the blend exerts an effective, generic attraction to multiple species, it is likely that previously unknown and unexpected spe-cies can be captured due to the high degree of conservation of pheromone structures within related taxa. A total of 78,321 longhorned beetles were trapped, representing 376 species from eight subfamilies, with 84 species captured in numbers greater than 50 individuals. Captures comprised 60 tribes, with 10 tribes including more than nine species trapped on different continents. Some invasive species were captured in both the native and invaded continents. This demonstrates the potential of multipheromone lures as ef-fective tools for the detection of 'unexpected' cerambycid invaders, accidentally translocated outside their native ranges. Adding new pheromones with analogous well-conserved motifs is discussed, as well as the limitations of using such blends, especially for some cerambycid taxa which may be more attracted by the trap colour or other characteristics rather than to the chemical blend

    The harlequin ladybird, Harmonia axyridis: global perspectives on invasion history and ecology

    Get PDF
    The harlequin ladybird, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), is native to Asia but has been intentionally introduced to many countries as a biological control agent of pest insects. In numerous countries, however, it has been introduced unintentionally. The dramatic spread of H. axyridis within many countries has been met with considerable trepidation. It is a generalist top predator, able to thrive in many habitats and across wide climatic conditions. It poses a threat to biodiversity, particularly aphidophagous insects, through competition and predation, and in many countries adverse effects have been reported on other species, particularly coccinellids. However, the patterns are not consistent around the world and seem to be affected by many factors including landscape and climate. Research on H. axyridis has provided detailed insights into invasion biology from broad patterns and processes to approaches in surveillance and monitoring. An impressive number of studies on this alien species have provided mechanistic evidence alongside models explaining large-scale patterns and processes. The involvement of citizens in monitoring this species in a number of countries around the world is inspiring and has provided data on scales that would be otherwise unachievable. Harmonia axyridis has successfully been used as a model invasive alien species and has been the inspiration for global collaborations at various scales. There is considerable scope to expand the research and associated collaborations, particularly to increase the breadth of parallel studies conducted in the native and invaded regions. Indeed a qualitative comparison of biological traits across the native and invaded range suggests that there are differences which ultimately could influence the population dynamics of this invader. Here we provide an overview of the invasion history and ecology of H. axyridis globally with consideration of future research perspectives. We reflect broadly on the contributions of such research to our understanding of invasion biology while also informing policy and people

    Harmonia axyridis recordings in northern Italy

    No full text
    In summer 2008, larvae, pupae and adults of Harmonia axyridis (Pallas) (Coleoptera Coccinellidae) were found in several localities in northern Italy. Since the first record in Turin (Piedmont) in 2006, this ladybird, just two years later, was collected up to the northeast of Italy. The colour forms found consisted for 97.52% of H. axyridis succinea and 2.48% of H. axyridis spectabilis (n = 1049). These records may represent a case study in modelling intra-guild predation and the spread of an exotic species

    Tracking outbreak populations of the pepper weevil Anthonomus eugenii (Coleoptera; Curculionidae) using complete mitochondrial genomes

    No full text
    The pepper weevil, Anthonomus eugenii, is a major pest on Capsicum species. Apart from natural spread, there is a risk of spread via international pepper trade. In the Netherlands, a pepper weevil outbreak occurred in 2012 and affected six greenhouses producing different sweet pepper varieties. The following year, a pepper weevil outbreak occurred in Italy. To trace the origin of the Dutch outbreak and to establish if the Dutch and Italian outbreaks were linked, we determined the mitogenomes of A. eugenii specimens collected at outbreak locations, and compared these with specimens from the native area, and other areas where the pest was introduced either by natural dispersal or via trade. The circular 17,257 bp A. eugenii mitogenome comprises thirteen mitochondrial genes typically found in insect species. Intra-species variation of these mitochondrial genes revealed four main mitochondrial lineages encompassing 41 haplotypes. The highest diversity was observed for specimens from its presumed native area (i.e. Mexico). The Dutch outbreak specimens represented three highly similar haplotypes, suggesting a single introduction of the pest. The major Dutch haplotype was also found in two specimens from New Jersey. As the Netherlands does not have pepper trade with New Jersey, it is likely that the specimens sampled in New Jersey and those sampled in the Netherlands originate from a shared source that was not included in this study. In addition, our analysis shows that the Italian and Dutch outbreaks were not linked. The mitochondrial genome is a useful tool to trace outbreak populations and the methodology presented in this paper could prove valuable for other invasive pest species, such as the African fruit moth Thaumatotibia leucotreta and emerald ash borer Agrilus planipennis.</p

    Analysis of Thaumatotibia leucotreta (Lepidoptera: Tortricidae: Olethreutinae) mitochondrial genomes in the context of a recent host range expansion

    No full text
    Abstract Background The false codling moth (FCM), Thaumatotibia leucotreta (Meyrick, 1913), is a significant pest of various important economic crops and is a EU quarantine pest. In the last decade the pest has been reported on Rosa spp. In this study we determined whether this shift occurred within specific FCM populations across seven eastern sub-Saharan countries or whether the species opportunistically switches to this novel host as it presents itself. To achieve this, we assessed the genetic diversity of complete mitogenomes of T. leucotreta specimens intercepted at import and analysed potential linkages with the geographical origin and host species. Results Genomic, geographical and host information were integrated into a T. leucotreta Nextstrain build which contains 95 complete mitogenomes generated from material intercepted at import between January 2013 and December 2018. Samples represented seven sub-Saharan countries and mitogenomic sequences grouped in six main clades. Discussion If host strains of FCM would exist, specialization from a single haplotype towards the novel host is expected. Instead, we find specimens intercepted on Rosa spp. in all six clades. The absence of linkage between genotype and host suggests opportunistic expansion to the new host plant. This underlines risks of introducing new plant species to an area as the effect of pests already present on the new plant might be unpredictable with current knowledge
    corecore